Импульсная характеристика: определение и свойства. Учебное пособие: Переходные и импульсные характеристики электрических цепей Переходная и импульсная характеристики цепи

Рассмотрим линейную электрическую цепь, не содержащую независимых ис точников тока и напряжения. Пусть внешнее воздействие на цепь представляет со

Переходной характеристикой g (t -t 0 ) линейной цепи, не содержащей незави симых источников энергии, называется отношение реакции этой цепи на воздейст вие неединичного скачка тока или напряжения к высоте этого скачка при нулевых начальных условиях:

реходная характеристика цепи численно равна реакции цепи на воздействие единич­ ного скачка тока или напряжения. Размерность переходной характеристики равна отношению размерности отклика к размерности внешнего воздействия, поэтому переходная характеристика может иметь размерность сопротивления, проводимо сти или быть безразмерной величиной.

Пусть внешнее воздействие на цепь имеет форму бесконечно короткого им пульса бесконечно большой высоты и конечной площади А И :

и .

Реакцию цепи на это воздействие при нулевых начальных условиях обозначим

Импульсной характеристикой h (t -t 0 ) линейной цепи, не содержащей неза висимых источников энергии, называется отношение реакции этой цепи на воздей ствие бесконечно короткого импульса бесконечно большой высоты и конечной площади к площади этого импульса при нулевых начальных условиях:

⁄ и .

Как следует из выражения (6.109), импульсная характеристика цепи численно равна реакции цепи на воздействие единичного импульса (А И = 1). Размерность им пульсной характеристики равна отношению размерности отклика цепи к произве дению размерности внешнего воздействия на время.

Подобно комплексной частотной и операторной характеристикам цепи, пере ходная и импульсная характеристики устанавливают связь между внешним воздей ствием на цепь и ее реакцией, однако в отличие от комплексной частотной и опера торной характеристик аргументом переходной и импульсной характеристик явля ется время t , а не угловая ω или комплексная р частота. Так как характеристики це пи, аргументом которых является время, называются временны́ми, а аргументом которых является частота (в том числе и комплексная) - частотными характери

стиками (см. модуль 1.5), то переходная и импульсная характеристики относятся к временны́м характеристикам цепи.

Каждой паре « внешнее воздействие на цепь - реакция цепи » можно поставить в соответствие определенную комплексную частотную

Для установления связи между этими характеристиками найдем операторные изображения переходной и импульсной характеристик. Используя выражения

(6.108), (6.109), запишем

Операторные изображения реакции цепи на внеш

ние воздействия. Выражая

через операторные изображения внешних

воздействий

Аи

; получаем

0 операторные изображения переходной и импульсной характери

стик имеют особенно простой вид:

Таким образом, импульсная характеристика цепи

Это функция, изо

бражение которой по Лапласу, представляет собой операторную характеристику це

между частотными и временными характеристиками цепи. Зная, например, им пульсную характеристику можно с помощью прямого преобразования Лапла са найти соответствующую операторную характеристику цепи

Используя выражения (6.110) и теорему дифференцирования (6.51), нетрудно установить связь между переходной и импульсной характеристиками:

Следовательно, импульсная характеристика цепи равна первой производной переходной характеристики по времени. В связи с тем, что переходная характери стика цепи g (t-t 0 ) численно равна реакции цепи на воздействие единичного скачка напряжения или тока, приложенного к цепи с нулевыми начальными условиями, значения функции g (t-t 0 ) при t < t 0 равны нулю. Поэтому, строго говоря, переход ную характеристику цепи следует записывать как g (t-t 0 ) ∙ 1(t-t 0 ), а не g (t-t 0 ). За меняя в выражении (6.112) g (t-t 0 ) на g (t-t 0 ) ∙ 1(t-t 0 ) и используя соотношение (6.104), получаем

Выражение (6.113) известно под названием формулы обобщенной производ­ ной . Первое слагаемое в этом выражении представляет собой производную пере ходной характеристики при t > t 0 , а второе слагаемое содержит произведение δ функции на значение переходной характеристики в точке t = t 0 . Если при t = t 0 функ ция g (t-t 0 ) изменяется скачкообразно, то импульсная характеристика цепи содер жит δ функцию, умноженную на высоту скачка переходной характеристики в точке t = t 0 . Если функция g (t-t 0 ) не претерпевает разрыва при t = t 0 , т. е. значение переход ной характеристики в точке t = t 0 равно нулю, то выражение для обобщенной произ водной совпадает с выражением для обычной производной.

Методы определения временных характеристик

Для определения временны́х характеристик линейной цепи в общем случае не обходимо рассмотреть переходные процессы, имеющие место в данной цепи при воздействии на нее единичного скачка (единичного импульса) тока или напряже ния. Это может быть выполнено с помощью классического или операторного метода анализа переходных процессов. На практике для нахождения временных характери стик линейных цепей удобно использовать другой путь, основанный на применении соотношений, устанавливающих связь между частотными и временными характери стиками. Определение временных характеристик в этом случае начинается с состав

операторную характеристику цепи и применяя соотношения (6.110) или (6.111), оп ределяют искомые временные характеристики.

щающего цепи определенную энергию. Токи индуктивностей и напряжения емко стей при этом скачком изменяются на значение, соответствующее поступившей в цепь энергии. На втором этапе (при) действие приложенного к цепи внешне го воздействия закончилось (при этом соответствующие источники энергии вы ключены, т. е. представлены внутренними сопротивлениями), и в цепи возникают свободные процессы, протекающие за счет энергии, запасенной в реактивных эле ментах на первой стадии переходного процесса. Таким образом, импульсная харак теристика цепи, численно равная реакции на воздействие единичного импульса то ка или напряжения, характеризует свободные процессы в рассматриваемой цепи.

Пример6.7.Для цепи, схема которой приведена на рис. 3.12, а, найдем переходную и импульсную характеристики в режиме холостого хода на зажимах 2―2". Внешнее воздейст

вие на цепь ― напряжение на зажимах 1―1"

Реакция цепи ― напряжение на зажи

Операторная характеристика данной цепи, соответствующая заданной паре «внеш нее воздействие на цепь ― реакция цепи», была получена в примере 6.5:

х ⁄ .

Следовательно, операторные изображения переходной и импульсной характери стик цепи имеют вид

⁄ ;

1 ⁄ 1 ⁄ .

Используя таблицы обратного преобразования Лапласа см. приложение 1 , пере ходим от изображений искомых временных характеристик к оригиналам рис. 6.20, а, б:

Отметим, что выражение для импульсной характеристики цепи может быть полу чено и с помощью формулы 6.113 , примененной к выражению для переходной характери стики цепи g t .

Для качественного объяснения вида переходной и импульсной характеристик цепи в данном включении рис. 6.20, а, б подсоединим к зажимам 1-1" независимый источник напряжения рис. 6.20, в. Переходная характеристика данной цепи численно рав на напряжению на зажимах 2-2" при воздействии на цепь единичного скачка напряжения

1 В и нулевых начальных условиях. В начальный момент времени после коммута

ции сопротивление индуктивности бесконечно велико, поэтому при t

на выходе цепи равно напряжению на зажимах 1-1": u 2 |t 0

u 1| t 0

1 В. С течением вре

мени напряжение на индуктивности уменьшается, стремясь к нулю при t

∞ . В соответст

вии с этим переходная характеристика начинается от значения g 0

1 и стремится к нулю

Импульсная характеристика цепи численно равна напряжению на зажимах 2 - 2"

при приложении к входу цепи единичного импульса напряжения e t

Замечательная особенность линейных систем - справедливость принципа суперпозиции - открывает прямой путь к систематическому решению задач о прохождении разнообразных сигналов через такие системы. Способ динамического представления (см. гл. 1) позволяет представлять сигналы в виде сумм элементарных импульсов. Если удастся тем или иным способом иайти реакцию на выходе, возникающую под воздействием элементарного импульса на входе, то окончательным этапом решения задачи явится суммирование таких реакций.

Намеченный путь анализа основан на временном представлении свойств сигналов и систем. В равной мере применим, а порой и гораздо более удобен анализ в частотной области, когда сигналы задаются рядами или интегралами Фурье. Свойства систем при этом описываются их частотными характеристиками, которые указывают закон преобразования элементарных гармонических сигналов.

Импульсная характеристика.

Пусть некоторая линейная стационарная система описывается оператором Т. Для простоты будем полагать, что входной и выходной сигналы одномерны. По определению, импульсной характеристикой системы называется функция являющаяся откликом системы на входной сигнал Это означает, что функция h(t) удовлетворяет уравнению

Поскольку система стационарна, аналогичное уравнение будет и в случае, если входное воздействие смещено во времени на производную величину :

Следует ясно представить себе, что импульсная характеристика, так же как и порождающая ее дельта-функция, есть результат разумной идеализации. С физической точки зрения импульсная характеристика приближенно отображает реакцию системы на входной импульсный сигнал произвольной формы с единичной площадью при условии, что длительность этого сигнала пренебрежимо мала по сравнению с характерным временным масштабом системы, например периодом ее собственных колебаний.

Интеграл Дюамеля.

Зная импульсную характеристику линейной стационарной системы, можно формально решить любую задачу о прохождении детерминированного сигнала через такую систему. Действительно, в гл. 1 было показано, что входной сигнал всегда допускает представление вида

Отвечающая ему выходная реакция

Теперь примем во внимание, что интеграл есть предельное значение суммы, поэтому линейный оператор Т на основании принципа суперпозиции может быть внесен под знак интеграла. Далее, оператор Т «действует» лишь на величины, зависящие от текущего времени t, но не от переменной интегрирования х. Поэтому из выражения (8.7) следует, что

или окончательно

Эта формула, имеющая фундаментальное значение в теории линейных систем, называется интегралом Дюамеля. Соотношение (8.8) свидетельствует о том, что выходной сигнал линейной стационарной системы представляет собой свертку двух функций - входного сигнала и импульсной характеристики системы. Очевидно, формула (8.8) может быть записана также в виде

Итак, если импульсная характеристика h(t) известна, то дальнейшие этапы решения сводятся к полностью формализованным операциям.

Пример 8.4. Некоторая линейная стационарная система, внутреннее устройство которой несущественно, имеет импульсную характеристику, представляющую собой прямоугольный видеоимпульс длительностью Т. Импульс возникает при t = 0 и обладает амплитудой

Определить выходную реакцию данной системы при подаче на вход ступенчатого сигнала

Применяя формулу интеграла Дюамеля (8.8), следует обратить внимание на то, что выходной сигнал будет выглядеть по-разному в зависимости от того, превышает или нет текущее значение длительность импульсной характеристики. При имеем

Если же то при функция обращается в нуль, поэтому

Найденная выходная реакция отображается кусочно-лннейным графиком.

Обобщение на многомерный случай.

До сих пор предполагалось, что как входной, так и выходной сигналы одномерны. В более общем случае системы с входами и выходами следует ввести парциальные импульсные характеристики каждая из которых отображает сигнал на выходе при подаче на вход дельта-функции.

Совокупность функций образует матрицу импульсных характеристик

Формула интеграла Дюамеля в многомерном случае приобретает вид

где - -мерный вектор; - -мерный вектор.

Условие физической реализуемости.

Каков бы ни был конкретный вид импульсной характеристики физически осуществимой системы, всегда должен выполняться важнейший принцип: выходной сигнал, отвечающий импульсному входному воздействию, не может возникнуть до момента появления импульса на входе.

Отсюда вытекает очень простое ограничение на вид допустимых импульсных характеристик:

Такому условию удовлетворяет, например, имупльсная характеристика системы, рассмотренной в примере 8.4.

Легко видеть, что для физически реализуемой системы верхний предел в формуле интеграла Дюамеля может быть заменен на текущее значение времени:

Формула (8.13) имеет ясный физический смысл: линейная стационарная система, выполняя обработку поступающего на вход сигнала, проводит операцию взвешенного суммирования всех его мгновенных значений, существовавших «в прошлом» при - Роль весовой функции выполняет при этом импульсная характеристика системы. Принципиально важно, что физически реализуемая система ни при каких обстоятельствах не способна оперировать «будущими» значениями входного сигнала.

Физически реализуемая система должна быть, кроме того, устойчивой. Это означает, что ее импульсная характеристика должна удовлетворять условию абсолютной интегрируемости

Переходная характеристика.

Пусть на входе линейной стационарной системы действует сигнал, изображаемый функцией Хевисайда .

Выходную реакцию

принято называть переходной характеристикой системы. Поскольку система стационарна, переходная характеристика инвариантна относительно временного сдвига:

Высказанные ранее соображения о физической реализуемости системы полностью переносятся на случай, когда система возбуждается не дельта-функцией, а единичным скачком. Поэтому переходная характеристика физически реализуемой системы отлична от нуля лишь при в то время как при t Между импульсной и переходной характеристиками имеется тесная связь. Действительно, так как то на основании (8.5)

Оператор дифференцирования и линейный стационарный оператор Т могут меняться местами, поэтому

Воспользовавшись формулой динамического представления (1.4) и поступая так же, как и при выводе соотношения (8.8), получаем еще одну форму интеграла Дюамеля:

Частотный коэффициент передачи.

При математическом исследовании систем особый интерес представляют такие входные сигналы, которые, будучи преобразованы системой, остаются неизменными по форме. Если имеется равенство

то является собственной функцией системного оператора Т, а число X, в общем случае комплексное, - его собственным значением.

Покажем, что комплексный сигнал при любом значении частоты есть собственная функция линейного стационарного оператора. Для этого воспользуемся интегралом Дюамеля вида (8.9) и вычислим

Отсюда видно, что собственным значением системного оператора является комплексное число

(8.21)

называемое частотным коэффициентом передачи системы.

Формула (8.21) устанавливает принципиально важный факт - частотный коэффициент передачи и импульсная характеристика линейной стационарной системы связаны между собой преобразованием Фурье. Поэтому всегда, зная функцию можно определить импульсную характеристику

Мы подошли к важнейшему положению теории линейных стационарных систем - любую такую систему можно рассматривать либо во временной области с помощью ее импульсной или переходной характеристик, либо в частотной области, задавая частотный коэффициент передачи. Оба подхода равноценны и выбор одного из них диктуется удобствами получения исходных данных о системе и простотой вычислений.

В заключение отметим, что частотные свойства линейной системы, имеющей входов и выходов, можно описать матрицей частотных коэффициентов передачи

Между матрицами существует закон связи, аналогичный тому, который задан формулами (8.21), (8.22).

Амплитудно-частотная и фазочастотная характеристики.

Функция имеет простую интерпретацию: если на вход системы поступает гармонический сигнал с известной частотой и комплексной амплитудой то комплексная амплитуда выходного сигнала

В соответствии с формулой (8.26) модуль частотного коэффициента передачи (АЧХ) есть четная, а фазовый угол (ФЧХ) - нечетная функция частоты.

Гораздо сложнее ответить на вопрос о том, каким должен быть частотный коэффициент передачи для того, чтобы выполнялись условия физической реализуемости (8.12) и (8.14). Приведем без доказательства окончательный результат, известный под названием критерия Пэли - Винера: частотный коэффициент передачи физически реализуемой системы должен быть таким, чтобы существовал интеграл

Рассмотрим конкретный пример, иллюстрирующий свойства частотного коэффициента передачи линейной системы.

Пример 8.5. Некоторая линейная стационарная система имеет свойства идеального ФНЧ, т. е. ее частотный коэффициент передачи задается системой равенств:

Да основании выражения (8.20) импульсная характеристика такого фильтра

Симметрия графика этой функции относительно точки t = 0 свидетельствует о нереализуемости идеального фильтра нижних частот. Впрочем, этот вывод непосредственно вытекает из критерия Пэли - Винера. Действительно, интеграл (8.27) расходится для любой АЧХ, которая обращается в нуль на некотором конечном отрезке оси частот.

Несмотря на нереализуемость идеального ФНЧ, эту модель с успехом используют для приближенного описания свойств частотных фильтров, полагая, что функция содержит фазовый множитель, линейно зависящий от частоты:

Как нетрудно проверить, здесь импульсная характеристика

Параметр равный по модулю коэффициенту наклона ФЧХ, определяет задержку во времени максимума функции h(t). Ясно, что данная модель тем точнее отображает свойства реализуемой системы, чем больше значение

Интеграл Дюамеля.

Зная реакцию цепи на единичное возмущающее воздействие, т.е. функцию переходной проводимости или (и) переходную функцию по напряжению , можно найти реакцию цепи на воздействие произвольной формы. В основе метода – метода расчета с помощью интеграла Дюамеля – лежит принцип наложения.

При использовании интеграла Дюамеля для разделения переменной, по которой производится интегрирование, и переменной, определяющей момент времени, в который определяется ток в цепи, первую принято обозначать как , а вторую - как t.

Пусть в момент времени к цепи с нулевыми начальными условиями (пассивному двухполюснику ПД на рис. 1) подключается источник с напряжением произвольной формы. Для нахождения тока в цепи заменим исходную кривую ступенчатой (см. рис. 2), после чего с учетом, что цепь линейна, просуммируем токи от начального скачка напряжения и всех ступенек напряжения до момента t, вступающих в действие с запаздыванием по времени.

В момент времени t составляющая общего тока, определяемая начальным скачком напряжения , равна .

В момент времени имеет место скачок напряжения , который с учетом временного интервала от начала скачка до интересующего момента времени t обусловит составляющую тока .

Полный ток в момент времени t равен, очевидно, сумме всех составляющих тока от отдельных скачков напряжения с учетом , т.е.

Заменяя конечный интервал приращения времени на бесконечно малый, т.е. переходя от суммы к интегралу, запишем

. (1)

Соотношение (1) называется интегралом Дюамеля.

Следует отметить, что с использованием интеграла Дюамеля можно определять также напряжение. При этом в (1) вместо переходной проводимости будет входить переходная функция по напряжению.


Последовательность расчета с использованием
интеграла Дюамеля

В качестве примера использования интеграла Дюамеля определим ток в цепи рис. 3, рассчитанный в предыдущей лекции с использованием формулы включения.

Исходные данные для расчета: , , .

  1. Переходная проводимость

.


18. Передаточная функция .

Отношение оператора воздействия к собственному оператору называют передаточной функцией или передаточной функцией в операторной форме.

Звено, описываемое уравнением или уравнениями в символической или операторной форме записи можно охарактеризовать двумя передаточными функциями: передаточной функцией по входной величине u; и передаточной функцией по входной величине f.

и

Используя передаточные функции, уравнение записывают в виде . Это уравнение представляет собой условную более компактную запись форму записи исходного уравнения.

Наряду с передаточной функцией в операторной форме широко используют передаточную функцию в форме изображений Лапласа.

Передаточные функции в форме изображений Лапласа и операторной форме с точностью до обозначений совпадают. Передаточную функцию в форме, изображения Лапласа можно получить из передаточной функции в операторной форме, если в последней сделать подстановку p=s. В общем случае это следует из того, что дифференцированию оригинала - символическому умножению оригинала на p - при нулевых начальных условиях соответствует умножение изображения на комплексное число s.

Сходство между передаточными функциями в форме изображения Лапласа и в операторной форме чисто внешнее, и оно имеет место только в случае стационарных звеньев (систем), т.е. только при нулевых начальных условиях.

Рассмотрим простую RLC (последовательно) цепь, её передаточная функция W(p)=U ВЫХ /U ВХ


Интеграл Фурье.

Функция f (x ), определенная на всей числовой оси называется периодической , если существует такое число, что при любом значении х выполняется равенство . Число Т называется периодом функции.

Отметим некоторые с в о й с т в а этой функции:

1) Сумма, разность, произведение и частное периодических функций периода Т есть периодическая функция периода Т .

2) Если функция f (x ) период Т , то функция f (ax )имеет период .

3) Если f (x )- периодическая функция периода Т , то равны любые два интеграла от этой функции, взятые по промежуткам длины Т (при этом интеграл существует), т. е. при любых a и b справедливо равенство .

Тригонометрический ряд. Ряд Фурье

Если f (x ) разлагается на отрезке в равномерно сходящийся тригонометрический ряд:(1)

То это разложение единственное и коэффициенты определяются по формулам:

где n =1,2, . . .

Тригонометрический ряд (1) рассмотренного вида с коэффициентами называется тригонометрическим рядом Фурье .

Комплексная форма ряда Фурье

Выражение называется комплексной формой ряда Фурье функции f (x ), если определяется равенством

, где

Переход от ряда Фурье в комплексной форме к ряду в действительной форме и обратно осуществляется с помощью формул:

(n =1,2, . . .)

Интегралом Фурье функции f(x) называется интеграл вида:

, где .


Частотные функции.

Если подать на вход системы с передаточной функцией W(p) гармонический сигнал

то после завершения переходного процесса на выходе установится гармонические колебания

с той же частотой , но иными амплитудой и фазой, зависящими от частоты возмущающего воздействия. По ним можно судить о динамических свойствах системы. Зависимости, связывающие амплитуду и фазу выходного сигнала с частотой входного сигнала, называются частотными характеристиками (ЧХ). Анализ ЧХ системы с целью исследования ее динамических свойств называется частотным анализом .

Подставим выражения для u(t) и y(t) в уравнение динамики

(aоp n + a 1 pn - 1 + a 2 p n - 2 + ... + a n)y = (bоp m + b 1 p m-1 + ... + b m)u.

Учтем, что

pnu = pnU m ejwt = U m (jw)nejwt = (jw)nu.

Аналогичные соотношения можно записать и для левой части уравнения. Получим:

По аналогии с передаточной функцией можно записать:

W(j ), равная отношению выходного сигнала к входному при изменении входного сигнала по гармоническому закону, называется частотной передаточной функцией . Легко заметить, что она может быть получена путем простой замены p на j в выражении W(p).

W(j ) есть комплексная функция, поэтому:

где P() - вещественная ЧХ (ВЧХ) ; Q() - мнимая ЧХ (МЧХ) ; А() - амплитудная ЧХ (АЧХ) : () - фазовая ЧХ (ФЧХ) . АЧХ дает отношение амплитуд выходного и входного сигналов, ФЧХ - сдвиг по фазе выходной величины относительно входной:

;

Если W(j ) изобразить вектором на комплексной плоскости, то при изменении от 0 до + его конец будет вычерчивать кривую, называемую годографом вектора W(j ), или амплитудно - фазовую частотную характеристику (АФЧХ) (рис.48).

Ветвь АФЧХ при изменении от - до 0 можно получить зеркальным отображением данной кривой относительно вещественной оси.

В ТАУ широко используются логарифмические частотные характеристики (ЛЧХ) (рис.49): логарифмическая амплитудная ЧХ (ЛАЧХ) L() и логарифмическая фазовая ЧХ (ЛФЧХ) ().

Они получаются путем логарифмирования передаточной функции:

ЛАЧХ получают из первого слагаемого, которое из соображений масштабирования умножается на 20, и используют не натуральный логарифм, а десятичный, то есть L() = 20lgA(). Величина L() откладывается по оси ординат в децибелах .

Изменение уровня сигнала на 10 дб соответствует изменению его мощности в 10 раз. Так как мощность гармонического сигнала Р пропорциональна квадрату его амплитуды А, то изменению сигнала в 10 раз соответствует изменение его уровня на 20дб,так как

lg(P 2 /P 1) = lg(A 2 2 /A 1 2) = 20lg(A 2 /A 1).

По оси абсцисс откладывается частота w в логарифмическом масштабе. То есть единичным промежуткам по оси абсцисс соответствует изменение w в 10 раз. Такой интервал называется декадой . Так как lg(0) = - , то ось ординат проводят произвольно.

ЛФЧХ, получаемая из второго слагаемого, отличается от ФЧХ только масштабом по оси . Величина () откладывается по оси ординат в градусах или радианах. Для элементарных звеньев она не выходит за пределы: - + .

ЧХ являются исчерпывающими характеристиками системы. Зная ЧХ системы можно восстановить ее передаточную функцию и определить параметры.


Обратные связи.

Принято считать, что звено охвачено обратной связью, если его выходной сигнал через какое-либо другое звено подается на вход. При этом, если сигнал обратной связи вычитается из входного воздействия (), то обратную связь называют отрицательной. Если сигнал обратной связи складывается с входным воздействием (), то обратную связь называют положительной.

Передаточная функция замкнутой цепи с отрицательной обратной связью - звена, охваченного отрицательной обратной связью,- равна передаточной функции прямой цепи , деленной на единицу плюс передаточная функция разомкнутой цепи

Передаточная функция замкнутой цепи с положительной обратной связью равна передаточной функции прямой цепи, деленной на единицу минус передаточная функция разомкнутой цепи


22. 23. Четырёхполюсники .

При анализе электрических цепей в задачах исследования взаимосвязи между переменными (токами, напряжениями, мощностями и т.п.) двух каких-то ветвей схемы широко используется теория четырехполюсников.

Четырехполюсник – это часть схемы произвольной конфигурации, имеющая две пары зажимов (отсюда и произошло его название), обычно называемые входными и выходными.

Примерами четырыхполюсника являются трансформатор, усилитель, потенциометр, линия электропередачи и другие электротехнические устройства, у которых можно выделить две пары полюсов.

В общем случае четырехполюсники можно разделить на активные, в структуру которых входят источники энергии, и пассивные, ветви которых не содержат источников энергии.

Для записи уравнений четырехполюсника выделим в произвольной схеме ветвь с единственным источником энергии и любую другую ветвь с некоторым сопротивлением (см. рис. 1,а).

В соответствии с принципом компенсации заменим исходное сопротивление источником с напряжением (см. рис. 1,б). Тогда на основании метода наложения для цепи на рис. 1,б можно записать

Уравнения (3) и (4) представляют собой основные уравнения четырехполюсника; их также называют уравнениями четырехполюсника в А-форме (см. табл. 1). Вообще говоря, существует шесть форм записи уравнений пассивного четырехполюсника. Действительно, четырехполюсник характеризуется двумя напряжениями и и двумя токами и . Любые две величины можно выразить через остальные. Так как число сочетаний из четырех по два равно шести, то и возможно шесть форм записи уравнений пассивного четырехполюсника, которые приведены в табл. 1. Положительные направления токов для различных форм записи уравнений приведены на рис. 2. Отметим, что выбор той или иной формы уравнений определяется областью и типом решаемой задачи.

Таблица 1. Формы записи уравнений пассивного четырехполюсника

Форма Уравнения Связь с коэффициентами основных уравнений
А-форма ; ;
Y-форма ; ; ; ; ; ;
Z-форма ; ; ; ; ; ;
Н-форма ; ; ; ; ; ;
G-форма ; ; ; ; ; ;
B-форма ; . ; ; ; .

Характеристическое сопротивление и коэффициент
распространения симметричного четырехполюсника

В электросвязи широко используется режим работы симметричного четырехполюсника, при котором его входное сопротивление равно нагрузочному, т.е.

.

Это сопротивление обозначают как и называют характеристическим сопротивлением симметричного четырехполюсника, а режим работы четырехполюсника, для которого справедливо

,

Министерство образования и науки Украины

Донецкий Национальный Университет

Доклад

на тему: Радиотехнические цепи и сигналы

Студента 3 курса дневного отделения НФ-3

Разработал студент:

Александрович С. В.

Проверил преподаватель:

Долбещенков В. В.

ВВЕДЕНИЕ

"Радиотехнические цепи и сигналы" (РТЦ и С) – курс, являющийся продолжением курса "Основы теории цепей". Его целью является изучение фундаментальных закономерностей, связанных с получением сигналов, их передачей по каналам связи, обработкой и преобразованием в радиотехнических цепях. Излагаемые в курсе "РТЦ и С" методы анализа сигналов и радиотехнических цепей используют математические и физические сведения, в основном известные студентам из предшествующих дисциплин. Важная задача курса "РТЦ и С" – научить студентов выбирать математический аппарат, адекватный встретившейся проблеме, показать, как работает этот аппарат при решении конкретных задач в области радиотехники. Не менее важно научить студентов видеть тесную связь математического описания с физической стороной рассматриваемого явления, уметь составлять математические модели изучаемых процессов.

Основные разделы, изучаемые в курсе "Радиотехнические цепи и сигналы":

1. Временной анализ цепей на основе свертки;

2. Спектральный анализ сигналов;

3. Радиосигналы с амплитудной, угловой модуляцией;

4. Корреляционный анализ сигналов;

5. Активные линейные цепи;

6. Анализ прохождения сигналов через узкополосные цепи;

7. Отрицательная обратная связь в линейных цепях;

8. Синтез фильтров;

9. Нелинейные цепи и методы их анализа;

10. Цепи с переменными параметрами;

11. Принципы генерирования гармонических колебаний;

12. Принципы обработки сигналов дискретного времени;

13. Случайные сигналы;

14. Анализ прохождения случайных сигналов через линейные цепи;

15. Анализ прохождения случайных сигналов через нелинейные цепи;

16. Оптимальная фильтрация детерминированных сигналов в шумах;

17. Оптимальная фильтрация случайных сигналов;

18. Численные методы расчета линейных цепей.

ВРЕМЕННОЙ АНАЛИЗ ЦЕПЕЙ НА ОСНОВЕ СВЕРТКИ

Переходная и импульсная характеристика

В основе временного метода лежит понятие переходной и им­пульсной характеристик цепи. Переходной характеристикой цепи называют реакцию цепи на воздействие в форме единичной функции. Обозначается переходная характеристика цепи g (t ). Импульсной характеристикой цепи называют реакцию цепи на воз­действие единичной импульсной функции (d-функции). Обо­значается импульсная характеристика h (t ). Причем, g (t ) и h (t )определяются при нулевых начальных условиях в цепи. В зави­симости от типа реакции и типа воздействия (ток или напряжение) переходные и импульсные характеристики могут быть безразмер­ными величинами, либо имеют размерность А/В или В/А.


Использование понятий переходной и импульсной характери­стик цепи позволяет свести расчет реакции цепи от действия непе­риодического сигнала произвольной формы к определению реакции цепи на простейшее воздействие типа единичной 1(t ) или импульс­ной функции d(t ), с помощью которых аппроксимируется исходный сигнал. При этом результирующая реакция линейной цепи нахо­дится (с использованием принципа наложения) как сумма реакций цепи на элементарные воздействия 1(t ) или d(t ).

Между переходной g (t ) и импульсной h (t ) характеристиками линейной пассивной цепи существует определенная связь. Ее можно установить, если представить единичную импульсную функцию через предельный переход разности двух единичных функций вели­чины 1/t, сдвинутых друг относительно друга на время t:

т. е. единичная импульсная функция рав­на производной единичной функции. Так как рассматриваемая цепь предполагается линейной, то соотношение сохраня­ется и для импульсных и переходных реак­ций цепи

т. е. импульсная характеристика является производной от переход­ной характеристики цепи.

Уравнение справедливо для случая, когда g (0) = 0 (нуле­вые начальные условия для цепи). Если же g (0) ¹ 0, то предста­вив g (t ) в виде g (t ) = , где = 0, получим уравнение связи для этого случая:

Для нахождения переходных и им­пуль­сных характеристик цепи можно использо­вать как классический, так и операторный методы. Сущность классического метода сос­то­ит в определении временной реакции цепи (в форме напряжения или тока в отдельных ветвях цепи) на воздействие единичной 1(t ) или импульсной d(t ) функ­ции. Обычно классическим методом удобно определять переходную характеристику g (t ), а импульсную характеристику h (t ) находить с помощью уравнений связи или операторным мето­дом.

Следует отметить, что величина I (р ) в уравнении численно равна изображению переходной проводимости. Аналогичное изо­бражение импульсной характеристики численно равно операторной проводимости цепи

Например, для -цепи имеем:

Применив к Y (p ) теорему разложения, получим:

В табл. 1.1 сведены значения переходной и импульсных харак­теристик по току и напряжению для некоторых цепей первого и второго порядка.

Расчет отклика цепи во многих случаях может быть упрощен, если входной сигнал представить суммой элементарных воздействий в виде прямоугольных импульсов малой длительности. Для этого сначала рассмотрим связь между функциями и, изображенными на рис.5.8а,6, которые можно записать в виде:

Вторая функция является единичным импульсом, который рассмотрен нами в п.2.4. Как видно, функция является производной от функции, т.е. . Осуществим в этих функциях предельный переход при. При этом функция перейдет в единичную функцию, а функция в функцию. Тогда в силу равенства следует, что единичный импульс, или - функция является производной единичной функции.

Для линейной цепи отсюда заключаем, что ее отклик на единичный импульс, называемый импульсной характеристикой цепи, является производной переходной характеристики цепи, т.е. или

Размерность импульсной характеристики равна размерности переходной характеристики, деленной на время.

Нахождение импульсной характеристики в большинстве случаев проще, чем нахождение переходной характеристики. Действительно, как показано в п. 2.4, спектральная функция единичного импульса, а поэтому для импульсной характеристики с помощью интеграла Фурье получаем выражение

Из этого выражения следует, что спектральная функция характеристики равна комплексному коэффициенту передачи цепи, т.е. или, пользуясь прямым преобразованием Фурье, запишем:

To есть импульсная характеристика цепи так же, как и переходная характеристика, определяется через коэффициент передачи, но для импульсной характеристики в большинстве случаев подынтегральное выражение в интеграле Фурье оказывается проще.

В качестве примера применим соотношение (5.14) для определения спектра импульсной характеристики интегрирующей цепи, переходная характеристика которой. Для импульсной характеристики получаем

Пользуясь здесь выражением (5.14), необходимо учесть, что переходная характеристика при тождественно равна нулю, и поэтому нижний предел в интеграле выражения (5.14) будет нуль. Тогда спектральная функция импульсной характеристики равна

т.е. получили коэффициент передачи интегрирующей цепи, соответствующий ранее полученному выражению (3.16).

Зная импульсную характеристику, можно найти отклик цепи на воздействие сигнала любой формы, либо предварительно найдя по соотношению (5.12) переходную характеристику, а затем воспользовавшись одним из выражений интеграла Дюамеля, либо непосредственно через функцию. В последнем случае входную функцию, т.е. воздействующий сигнал необходимо представить в виде суммы импульсов, как показано на рис. 5.9.

Такое представление функции будет точнее, если, т.е. если она представлена суммой бесконечно большого числа бесконечно малых по длительности импульсов, являющихся здесь элементарными воздействиями. Если бы элементарным воздействием был единичный импульс, площадь которого равна единице, то откликом цепи на такой импульс, появляющийся в момент времени, была бы импульсная характеристика. В рассматриваемом случае элементарный импульс имеет величину, равную мгновенному значению функции в момент и длительность, равную, т.е. его площадь равна. Тогда откликом на элементарное воздействие будет величина. Отклик цепи на воздействие, заданное функцией, будет суммой откликов на все элементарные воздействия, временное положение которых соответствует интервалу от 0 до, т.е.

Это выражение, являющееся еще одним видом записи интеграла Дюамеля, называется также сверткой функций. Оно по виду совпадает с оригиналом свертки изображений двух функций в формуле (4.21).

Импульсную характеристику цепи можно получить с помощью эксперимента, наблюдая отклик цепи (выходное напряжение) на электронном осциллографе. На вход цепи необходимо подать импульс весьма малой длительности. Для примера рассмотрим импульсную характеристику последовательного колебательного контура, считая, что выходное напряжение снимается с емкости С. Выше в п.1.6 мы рассмотрели переходный процесс при включении постоянного напряжения на такой контур. Если величина поданного напряжения равна единице, то напряжение на емкости, являющееся переходной характеристикой цепи равно, согласно (1.33),

Эта переходная характеристика представлена на рис.5.10а. Тогда импульсная характеристика контура

Считая добротность контура большой, полагаем и тогда первым членом можно пренебречь:

Эта характеристика представлена на рис.5.10б. Она соответствует осциллограмме свободных колебаний в контуре, рассмотренных нами в п.1.5.

Таким образом, для того чтобы экспериментально наблюдать импульсную характеристику контура, необходимо на вход контура подать импульс малой длительности, т.е. (как было пояснено в п.2.4) чтобы его длительность удовлетворяла условию.

Поделиться