Установил новый процессор i5 6400 пропало изображение.

Сравниваем память разных типов на одной платформе

Как показывает исторический опыт, разработчики компьютерных платформ всегда не слишком охотно стремились поддерживать оперативную память существенно разных типов. Причина проста: наиболее эффективную работу способен продемонстрировать контроллер (неважно, интегрированный ли в чипсет или в собственно процессор), в наилучшей степени «заточенный» под какой-то определенный тип памяти и учитывающий все его особенности. Пытаться добиться хорошей работы с разными типами памяти - значит, либо сделать все средне, либо все равно в наибольшей степени оптимизировать работу под один тип, реализовав поддержку другого лишь «для галочки». Впрочем, известны истории и удачные опыты: достаточно вспомнить процессоры AMD, долгое время отлично работавшие хоть с DDR2, хоть с DDR3. «Универсальным» же чипсетам Intel под LGA775 приходилось несколько хуже, поскольку узким местом зачастую была собственно шина FSB, связывающая чипсет с процессором, так что большого смысла в использовании «более перспективного» стандарта памяти (DDR2 вместо DDR для i915 или DDR3 вместо DDR2 позднее) не наблюдалось. Поэтому нет ничего удивительного в том, что, интегрировав контроллер памяти в процессор, Intel практически всегда ограничивалась лишь одним типом памяти. Впрочем, период с 2009 по 2014 гг. все равно ознаменовался господством DDR3, так что и необходимости такой не было.

Однако этот подход сильно ограничил память DDR4 сразу после ее появления: оказалось, что ее негде использовать. Первой платформой, поддерживающей DDR4, стала LGA2011-3 . И по уже сложившейся традиции, поддерживала она только DDR4. Что, в принципе, было достаточно логично: платформа изначально дорогая, ориентированная на узкий сегмент рынка, так что никого не смущала ни низкая (на тот момент) доступность модулей DDR4, ни высокая (опять же - на тот момент) их цена.

А вот над тем, с какой памятью должны работать процессоры семейства Skylake, компании пришлось крепко подумать. Дело в том, что этот кристалл был рассчитан уже не только на мощные модульные системы, но и на ноутбуки и даже планшеты, причем разных ценовых категорий - вплоть до бюджетных. А это означало, что могут потребоваться не только DIMM емкостью от 4 ГБ (с ними сейчас дела уже обстоят нормально: и в продаже широко представлены, и уровень цен аналогичен DDR3), но и SO-DIMM. Последние ранее использовать было просто негде, так что их никто не выпускал - со всеми вытекающими. В результате Intel сочла правильным пойти на компромисс: основным типом памяти для Skylake является DDR4, но все процессоры этого семейства поддерживают и DDR3L. Обратите внимание: именно DDR3L , а не обычную DDR3, что в очередной раз указывает нам именно на компактный низкопотребляющий сегмент. А чтоб не плодить соблазнов, компания ввела и дополнительные ограничения: максимальная официально поддерживаемая частота DDR3L составляет всего 1600 МГц, а не 2133 МГц - как для DDR4. Кроме того, изначально вообще шла речь об ограниченной поддержке различных конфигураций памяти частью чипсетов. В общем, казалось бы, обложили со всех сторон.

Однако на практике все оказалось менее однозначно. Во-первых, как и предполагалось на основе опыта с Bay Trail и Braswell, наличие официальной поддержки DDR3L позволяет производителям системных плат «неофициально» поддерживать и обычную DDR3. Во-вторых, К-серия процессоров традиционно позволяет весьма гибко менять в том числе и множители для памяти, так что теоретически на части плат с этими процессорами DDR3 можно легко разогнать за пару гигагерц (при наличии желания). В-третьих (что тоже неудивительно), производители плат довольно спокойно отнеслись к рекомендациям Intel, так что слоты под DDR3 можно увидеть и на некоторых модификациях топовых плат на базе чипсета Z170. Словом, полная свобода. Или почти полная.

Так ли она нужна? Вообще говоря, не очень. Как минимум, покупатели компактных систем и тех же ноутбуков, как правило, вариантов лишены - ибо сложно найти такого гика, который серьезно будет при выборе ориентироваться на поддерживаемый тем же ноутбуком тип памяти. К тому же, сразу после покупки этот вопрос вообще редко бывает актуален, а если со временем возникнет желание память поменять, нужно будет просто купить подходящую - только и всего. При покупке нового компьютера «с нуля» тоже имеет смысл ориентироваться на DDR4: как уже было сказано выше, при объемах от 4-8 ГБ (а меньше устанавливать уже и смысла нет) это обойдется практически в те же деньги, что и DDR3. Апгрейд? Сложно представить себе человека, который готов менять и процессор, и плату, но «держится» двумя руками за старые модули памяти - тем более, что и старое «железо» продавать обычно проще в комплекте. Возможна, конечно, ситуация, когда плата просто сгорела, а процессор поменять хочется - тут уже может возникнуть желание обойтись минимальными затратами, оставив на месте старые компоненты. Но это имеет смысл, если памяти достаточно, да и ее максимальная частота тогда большого значения не имеет - в старой системе могли стоять модули DDR3-1333 или что-то вроде того. В общем, на практике большого смысла в предложенной Intel гибкости для конечного пользователя нет. Однако, с другой стороны, посмотреть, как это работает, интересно. Мы уже тестировали систему на базе Core i5-6400 с DDR3L-1600, а сегодня решили немного расширить тему.

Конфигурация тестовых стендов

Процессор Intel Core i5-6400 Intel Core i7-6700K
Название ядра Skylake Skylake
Технология пр-ва 14 нм 14 нм
Частота ядра std/max, ГГц 2,7/3,3 4,0/4,2
Кол-во ядер/потоков 4/4 4/8
Кэш L1 (сумм.), I/D, КБ 128/128 128/128
Кэш L2, КБ 4×256 4×256
Кэш L3 (L4), МиБ 6 8
Оперативная память 2×DDR3L-1600
2×DDR4-2133
2×DDR3L-1600
2×DDR4-2133
TDP, Вт 65 91
Графика HDG 530 HDG 530
Кол-во EU 24 24
Частота std/max, МГц 350/950 350/1150
Цена T-12873939 T-12794508

Повторим, что процессор Core i5-6400 с DDR3L-1600 мы уже протестировали, так что сегодня сравним те результаты с полученными при использовании данного процессора совместно с DDR4-2133. Но поскольку это младший четырехъядерный процессор семейства, делать выводы по нему одному не слишком интересно, так что мы взяли еще и топовый Core i7-6700K с DDR4-2133, а также протестировали данный процессор с DDR3-1600 и... Идеальным вариантом была бы DDR3-2133, благо такой памяти у нас много, однако ни одну пару модулей не удалось заставить работать на этой частоте на плате Asus B150 Pro Gaming D3 . Максимум, что она умеет - 1866 МГц, что уже выше официальных спецификаций, но ниже обычной для DDR4 частоты (для DDR4 тоже можно выбрать такой режим, но практического смысла в этом нет). В общем, если хотите (зачем-то) использовать высокочастотную DDR3 - придется, пожалуй, аккуратно подбирать плату (скорее всего, экзотическую не менее, чем само такое желание - типа Z170 + DDR3). Мы же ограничились доступным режимом DDR3-1866 - по крайней мере, будет видно, где прирост от увеличения частоты памяти, а где - от оптимизаций контроллера. Если последних нет, то 1866 - это ровно середина между 1600 и 2133, а если есть - это будет сразу видно по нелинейности результатов. Нелинейность, впрочем, может быть вызвана и несколько более высокими задержками DDR4, но они будут «тянуть» производительность «вниз», а оптимизации - «вверх». Вот и посмотрим, кто сильнее.

Что касается прочих условий тестирования, то объем памяти (8 ГБ) и системный накопитель (Toshiba THNSNH256GMCT емкостью 256 ГБ) были одинаковыми для всех испытуемых. Видео - только встроенное, что для поиска разницы между конфигурациями памяти наиболее интересно: GPU куда более «жаден» до ее производительности, нежели процессорные ядра.

Методика тестирования

Для оценки производительности мы использовали нашу методику измерения производительности с применением бенчмарков и iXBT Game Benchmark 2015 . Все результаты тестирования в первом бенчмарке мы нормировали относительно результатов референсной системы, которая в этом году будет одинаковой и для ноутбуков, и для всех остальных компьютеров, что призвано облегчить читателям нелегкий труд сравнения и выбора:

iXBT Application Benchmark 2015

5% для i5-6400 и вдвое больше для почти вдвое более быстрого здесь i7-6700K - очень даже неплохо. И зависимость от частоты памяти фактически линейная. Но не стоит торопиться с выводами: в данном случае у нас одна программа из двух в большей степени зависит от GPU, так что возможно всякое.

Например - вот такое, где для i5-6400 разница сокращается до 2,5%, а для i7-6700K, напротив, подскакивает до 17,5%. Причем собственно от частоты памяти зависимость почти отсутствует, т. е. быстрая DDR3 бесполезна. А почему полезна быстрая DDR4? Точнее, почему она в одном случае очень полезна, а в другом - тоже почти бесполезна? Есть у нас подозрение, что это связано во многом и с архитектурой всей системы памяти. В частности, кэш L3 давно синхронизирован с процессорными ядрами, но это всего порядка 3 ГГц для i5-6400 и целых 4 ГГц для i7-6700K. А еще второй процессор работает с куда более «свободным» теплопакетом.

9% и 10% - почти одинаково для обоих испытуемых. Но вот от разгона памяти с 1600 до 1866 МГц испытуемые получают не 5% прироста, а всего-то 1,5%, т. е. дело в первую очередь не в частоте, а в прочих тонкостях работы.

Около 2% и более 6% - как видим, уже не в первый раз собственно мощность процессоров имеет значение. Это скорее хорошо, чем наоборот - ведь сохранить старую память может быть более интересно как раз покупателям более дешевых устройств, нежели выбирающим топовый процессор в линейке. И в очередной раз выигрыш не за счет частоты.

Повторяемость результатов становится все более однообразной. Конкретный прирост производительности немного меняется (здесь - 4% и 8% соответственно), но качественного изменения нет.

3% и 12% показывают, что в программах для создания видео был вовсе не какой-то «взбрык», а довольно обыденная ситуация. Что же касается частоты работы памяти, тут и без комментариев все ясно:)

Чем интересны архиваторы? Тем, что это одни из немногих программ, где скорость работы нередко зависит собственно от памяти , а не от нюансов работы процессора с памятью . Поэтому и прирост практически равный, и DDR3-1866 имеет смысл. Что ж, отметим, что и такое бывает. По «житейским представлениям» так должно быть всегда, а на деле - так всего лишь бывает.

Различия между разными режимами «скукоживаются» до микроскопических, но в относительном исчислении просто подтверждают все уже написанное выше.

Еще одна весьма забавная картинка, хотя и вполне объяснимая. Память при дисковых операциях современными версиями Windows используется весьма активно - для кэширования. При работе с винчестерами это не слишком заметно, а вот на быстром SSD может сыграть некоторую роль.

Итак, что мы имеем в сухом остатке? Прирост порядка 4% для Core i5-6400 и 8% у Core i7-6700K. Как видим, более быстрый и мощный процессор получает от более производительной памяти больше, поэтому можно предположить, что в случае бюджетных продуктов или мобильных решений использование DDR3 не приводит ни к каким проблемам с производительностью. Впрочем, можно ли вообще считать проблемами «недобор» 5-10 процентов быстродействия? Пожалуй, можно, поскольку в некоторых сценариях речь идет уже о 12-17 процентах, а это очень серьезно. Но справедливо это только для топовых систем, так что в них просто лучше использовать DDR4. Отметим: DDR4, а не высокочастотную DDR3, поскольку никакой линейности результатов в зависимости от частоты памяти не наблюдается. То есть дело не в частоте и не в теоретической ПСП.

Игровые приложения

По понятным причинам, для компьютерных систем такого уровня мы ограничиваемся режимом минимального качества, причем не только в «полном» разрешении, но и с его уменьшением до 1366×768. В принципе, игры у нас сегодня идут «вне конкурса», поскольку тот человек, которого они интересуют, наверняка приобретет дискретную видеокарту, а кого не интересуют - того не интересуют. Но нам они нужны: дело в том, что как раз для GPU очень важна та самая «теоретическая ПСП» и прочее. Так что в данном случае возможны совсем другие зависимости, нежели в приложениях общего назначения.

И вот оно - сразу же! Во-первых, мы видим существенно бо́льшую разницу между режимами. Во-вторых, результаты практически пропорциональны скорости памяти, а самой быстрой оказалась DDR3-1866. То есть когда дело доходит до графики, никакие оптимизации уже ничего не решают - просто память должна быть быстрой. И DDR4 тут «спасает» тот факт, что она по пропускной способности хотя бы заведомо быстрая. Но простое увеличение частоты DDR3 может оказаться более эффективным.

Поскольку WoT сильно зависит от процессорной производительности, тут уже DDR4 вне конкуренции. Но в любом случае прирост от ускорения памяти есть, и заметный.








Несколько диаграмм оставляем без комментариев: они похожи либо на первую, либо на вторую. А вот на этой остановимся: как видите, хоть память и является одним из «узких мест», сдерживающих развитие интегрированной графики, но не всегда ее ускорение позволяет получить практически значимый результат.

И вот еще один любопытный случай (впрочем, не первый) - когда игра в низком разрешении ведет себя «по-процессорному», а в нормальном - «по-видеокарточному». В основном, правда, все и так понятно: когда речь заходит именно о «потребностях GPU», значение имеют именно характеристики памяти. Ту же ПСП «не перешибешь» никакими оптимизациями, плюс задержки и т. п.

Итого

Итак, что мы имеем в конечном итоге? С видеочастью все просто: нужна быстрая память. Любая. Впрочем, не менее очевидно, что никакой все равно не хватает. Поэтому, раз уж в Intel решили не увеличивать поддерживаемые частоты DDR3 (1600 МГц стали штатными еще во времена Ivy Bridge), переход на DDR4 полезен. Но наилучшие результаты все равно обеспечивает использование кэш-памяти четвертого уровня , а таких процессоров в семействе Skylake пока вообще нет (и тем более их нет в «сокетном» исполнении). С другой стороны, геймерам в любом случае имеет смысл приобрести дискретную видеокарту, так что вопрос скорости встроенного видео имеет до сих пор не слишком высокое значение.

А вот что касается чисто процессорной производительности, то здесь вывод однозначен: для топовых систем правильным вариантом выбора является только DDR4. Причем не потому, что она сама по себе быстрее, а потому, что эти процессоры с ней работают быстрее. Но чем ниже производительность системы, тем меньше разница между разными типами памяти, так что в бюджетных системах или тех же ноутбуках применение DDR3 вполне оправдано, особенно если нужные модули уже есть «под рукой» или их можно приобрести недорого. Во всяком случае, это верно даже для младших «настольных» Core i5, а значит, должно выполняться и для процессоров более низкого класса (при наличии возможности мы это, разумеется, проверим).

Intel Core i5-6400 – младшая и, соответственно, самая доступная модель серии процессоров Core i5 поколения Skylake . Стоит i5-6400 с частотой 2,7 ГГц в среднем $190, тогда как за i5-6500 на 3,3 ГГц просят уже $230. За эту сумму помимо самого процессора вы получаете пусть не бесшумный, но вполне достаточный для отвода 65 Вт тепла кулер.

Четыре значит четыре

Все модели Core i5 для настольных ПК являются настоящими четырехъядерниками, тогда как у младших Core i3 физических ядер только два, а еще два ядра – виртуальные. Поэтому Core i5 примерно в полтора раза быстрее, чем Core i3 . Больше всего разница ощущается в профессиональных приложениях и процессорозависимых играх, таких как Battlefield 4, Arma 3, Assassin"s Creed Syndicate и др.

Авторазгон в придачу

Номинальную частота у Core i5-6400 сравнительно невысокая – 2,7 ГГц, но на выручку приходит технология гарантированного автоматического разгона Turbo Boost. Так, при нагрузке на все ядра процессор разгоняется до 3,1 ГГц , а при нагрузке только на одно ядро – до 3,3 ГГц. В итоге, порекомендовать i5-6400 мы можем для сборки продвинутого игрового ПК с видеокартой уровня Radeon RX 480, GeForce GTX 1060 и мощнее.

Тестовый стенд:

  • Процессор: Core i5-6400, Core i3-6300T
  • Процессорный кулер: Corsair H110i GT
  • Материнская плата: ASUS Z170 PRO Gaming
  • Видеокарта: AMD Radeon R9 Nano , 4 Гбайт HBM
  • Оперативная память: DDR4-2133 (15-15-15-36), 2x 8 Гбайт
  • Накопитель: OCZ Vertex 3, 360 Гбайт
  • Блок питания: Corsair HX850i, 850 Вт
  • Периферия: Samsung U28D590D , ROCCAT ARVO, ROCCAT SAVU
  • Операционная система: Windows 10 х64

Несколько предложений о конкуренции. Не утихают споры по поводу выбора платформы Intel для сборки игрового системного блока с нуля. Доказательством послужит наша рубрика «Компьютер месяца ». С бюджетом в размере 50-60 тысяч рублей реально собрать игровой компьютер с Core i5. Но какую платформу выбрать? С одной стороны, есть Core i5-6400 под LGA1151. С другой стороны, в продаже полно Core i5-4460 под LGA1150. Аргументов несколько: процессоры стоят одинаково, чип Haswell работает на более высокой тактовой частоте, переход на Skylake обойдется дороже. Поэтому одним из главных мотивов этого тестирования стало сравнение Core i5-6400 с Core i5-4460 во всех плоскостях.

Чипу Core i3-6300T противопоставим Core i3-4130. Это довольно старенький Haswell-процессор, вышел еще в третьем квартале 2013 года, но сравним с энергоэффективной Т-моделью по частоте.

Начнем с теста оперативной памяти. В стенде для процессоров Haswell использовался двухканальный набор DDR3-1600 при таймингах 9-9-9-28. Именно такой контроллер оперативной памяти интегрирован во все процессоры Core четвертого поколения. Неудивительно, что в тесте AIDA64 чипы Skylake оказались заметно быстрее Haswell, ведь их встроенный контроллер DDR4 поддерживает ОЗУ с эффективной частотой 2133 МГц. Впрочем, в реальных приложениях, как показал наш эксперимент , разницы между DDR3-1600 и DDR4-2133 практически не ощущается. Нынешнее поколение оперативной памяти губят очень высокие задержки.

The date the product was first introduced.

Lithography

Lithography refers to the semiconductor technology used to manufacture an integrated circuit, and is reported in nanometer (nm), indicative of the size of features built on the semiconductor.

# of Cores

Cores is a hardware term that describes the number of independent central processing units in a single computing component (die or chip).

# of Threads

A Thread, or thread of execution, is a software term for the basic ordered sequence of instructions that can be passed through or processed by a single CPU core.

Processor Base Frequency

Processor Base Frequency describes the rate at which the processor"s transistors open and close. The processor base frequency is the operating point where TDP is defined. Frequency is measured in gigahertz (GHz), or billion cycles per second.

Max Turbo Frequency

Max turbo frequency is the maximum single core frequency at which the processor is capable of operating using Intel® Turbo Boost Technology and, if present, Intel® Thermal Velocity Boost. Frequency is measured in gigahertz (GHz), or billion cycles per second.

Cache

CPU Cache is an area of fast memory located on the processor. Intel® Smart Cache refers to the architecture that allows all cores to dynamically share access to the last level cache.

Bus Speed

A bus is a subsystem that transfers data between computer components or between computers. Types include front-side bus (FSB), which carries data between the CPU and memory controller hub; direct media interface (DMI), which is a point-to-point interconnection between an Intel integrated memory controller and an Intel I/O controller hub on the computer’s motherboard; and Quick Path Interconnect (QPI), which is a point-to-point interconnect between the CPU and the integrated memory controller.

TDP

Thermal Design Power (TDP) represents the average power, in watts, the processor dissipates when operating at Base Frequency with all cores active under an Intel-defined, high-complexity workload. Refer to Datasheet for thermal solution requirements.

Embedded Options Available

Embedded Options Available indicates products that offer extended purchase availability for intelligent systems and embedded solutions. Product certification and use condition applications can be found in the Production Release Qualification (PRQ) report. See your Intel representative for details.

Max Memory Size (dependent on memory type)

Max memory size refers to the maximum memory capacity supported by the processor.

Memory Types

Intel® processors come in four different types: a Single Channel, Dual Channel, Triple Channel, and Flex Mode.

Max # of Memory Channels

The number of memory channels refers to the bandwidth operation for real world application.

Max Memory Bandwidth

Max Memory bandwidth is the maximum rate at which data can be read from or stored into a semiconductor memory by the processor (in GB/s).

ECC Memory Supported ‡

ECC Memory Supported indicates processor support for Error-Correcting Code memory. ECC memory is a type of system memory that can detect and correct common kinds of internal data corruption. Note that ECC memory support requires both processor and chipset support.

Processor Graphics ‡

Processor Graphics indicates graphics processing circuitry integrated into the processor, providing the graphics, compute, media, and display capabilities. Intel® HD Graphics, Iris™ Graphics, Iris Plus Graphics, and Iris Pro Graphics deliver enhanced media conversion, fast frame rates, and 4K Ultra HD (UHD) video. See the Intel® Graphics Technology page for more information.

Graphics Base Frequency

Graphics Base frequency refers to the rated/guaranteed graphics render clock frequency in MHz.

Graphics Max Dynamic Frequency

Graphics max dynamic frequency refers to the maximum opportunistic graphics render clock frequency (in MHz) that can be supported using Intel® HD Graphics with Dynamic Frequency feature.

Graphics Video Max Memory

The maximum amount of memory accessible to processor graphics. Processor graphics operates on the same physical memory as the CPU (subject to OS, driver, and other system limitations).

Graphics Output

Graphics Output defines the interfaces available to communicate with display devices.

Max Resolution (HDMI 1.4)‡

Max Resolution (HDMI) is the maximum resolution supported by the processor via the HDMI interface (24bits per pixel & 60Hz). System or device display resolution is dependent on multiple system design factors; actual resolution may be lower on your system.

Max Resolution (DP)‡

Max Resolution (DP) is the maximum resolution supported by the processor via the DP interface (24bits per pixel & 60Hz). System or device display resolution is dependent on multiple system design factors; actual resolution may be lower on your system.

Max Resolution (eDP - Integrated Flat Panel)‡

Max Resolution (Integrated Flat Panel) is the maximum resolution supported by the processor for a device with an integrated flat panel (24bits per pixel & 60Hz). System or device display resolution is dependent on multiple system design factors; actual resolution may be lower on your device.

Max Resolution (VGA)‡

Max Resolution (VGA) is the maximum resolution supported by the processor via the VGA interface (24bits per pixel & 60Hz). System or device display resolution is dependent on multiple system design factors; actual resolution may be lower on your system.

DirectX* Support

DirectX* Support indicates support for a specific version of Microsoft’s collection of APIs (Application Programming Interfaces) for handling multimedia compute tasks.

OpenGL* Support

OpenGL (Open Graphics Library) is a cross-language, multi-platform API (Application Programming Interface) for rendering 2D and 3D vector graphics.

Intel® Quick Sync Video

Intel® Quick Sync Video delivers fast conversion of video for portable media players, online sharing, and video editing and authoring.

Intel® InTru™ 3D Technology

Intel® InTru™ 3D Technology provides stereoscopic 3-D Blu-ray* playback in full 1080p resolution over HDMI* 1.4 and premium audio.

Intel® Clear Video HD Technology

Intel® Clear Video HD Technology, like its predecessor, Intel® Clear Video Technology, is a suite of image decode and processing technologies built into the integrated processor graphics that improve video playback, delivering cleaner, sharper images, more natural, accurate, and vivid colors, and a clear and stable video picture. Intel® Clear Video HD Technology adds video quality enhancements for richer color and more realistic skin tones.

Intel® Clear Video Technology

Intel® Clear Video Technology is a suite of image decode and processing technologies built into the integrated processor graphics that improve video playback, delivering cleaner, sharper images, more natural, accurate, and vivid colors, and a clear and stable video picture.

PCI Express Revision

PCI Express Revision is the version supported by the processor. Peripheral Component Interconnect Express (or PCIe) is a high-speed serial computer expansion bus standard for attaching hardware devices to a computer. The different PCI Express versions support different data rates.

PCI Express Configurations ‡

PCI Express (PCIe) Configurations describe the available PCIe lane configurations that can be used to link the PCH PCIe lanes to PCIe devices.

Max # of PCI Express Lanes

A PCI Express (PCIe) lane consists of two differential signaling pairs, one for receiving data, one for transmitting data, and is the basic unit of the PCIe bus. # of PCI Express Lanes is the total number supported by the processor.

Sockets Supported

The socket is the component that provides the mechanical and electrical connections between the processor and motherboard.

Thermal Solution Specification

Intel Reference Heat Sink specification for proper operation of this processor.

T CASE

Case Temperature is the maximum temperature allowed at the processor Integrated Heat Spreader (IHS).

Intel® Optane™ Memory Supported ‡

Intel® Optane™ memory is a revolutionary new class of non-volatile memory that sits in between system memory and storage to accelerate system performance and responsiveness. When combined with the Intel® Rapid Storage Technology Driver, it seamlessly manages multiple tiers of storage while presenting one virtual drive to the OS, ensuring that data frequently used resides on the fastest tier of storage. Intel® Optane™ memory requires specific hardware and software configuration. Visit www.intel.com/OptaneMemory for configuration requirements.

Intel® Turbo Boost Technology ‡

Intel® Turbo Boost Technology dynamically increases the processor"s frequency as needed by taking advantage of thermal and power headroom to give you a burst of speed when you need it, and increased energy efficiency when you don’t.

Intel® vPro™ Platform Eligibility ‡

The Intel vPro® platform is a set of hardware and technologies used to build business computing endpoints with premium performance, built-in security, modern manageability and platform stability.
Learn more about Intel vPro®

Intel® Hyper-Threading Technology ‡

Intel® Hyper-Threading Technology (Intel® HT Technology) delivers two processing threads per physical core. Highly threaded applications can get more work done in parallel, completing tasks sooner.

Intel® Virtualization Technology (VT-x) ‡

Intel® Virtualization Technology (VT-x) allows one hardware platform to function as multiple “virtual” platforms. It offers improved manageability by limiting downtime and maintaining productivity by isolating computing activities into separate partitions.

Intel® Virtualization Technology for Directed I/O (VT-d) ‡

Intel® Virtualization Technology for Directed I/O (VT-d) continues from the existing support for IA-32 (VT-x) and Itanium® processor (VT-i) virtualization adding new support for I/O-device virtualization. Intel VT-d can help end users improve security and reliability of the systems and also improve performance of I/O devices in virtualized environments.

Intel® VT-x with Extended Page Tables (EPT) ‡

Intel® VT-x with Extended Page Tables (EPT), also known as Second Level Address Translation (SLAT), provides acceleration for memory intensive virtualized applications. Extended Page Tables in Intel® Virtualization Technology platforms reduces the memory and power overhead costs and increases battery life through hardware optimization of page table management.

Intel® TSX-NI

Intel® Transactional Synchronization Extensions New Instructions (Intel® TSX-NI) are a set of instructions focused on multi-threaded performance scaling. This technology helps make parallel operations more efficient via improved control of locks in software.

Intel® 64 ‡

Intel® 64 architecture delivers 64-bit computing on server, workstation, desktop and mobile platforms when combined with supporting software.¹ Intel 64 architecture improves performance by allowing systems to address more than 4 GB of both virtual and physical memory.

Instruction Set

An instruction set refers to the basic set of commands and instructions that a microprocessor understands and can carry out. The value shown represents which Intel’s instruction set this processor is compatible with.

Instruction Set Extensions

Instruction Set Extensions are additional instructions which can increase performance when the same operations are performed on multiple data objects. These can include SSE (Streaming SIMD Extensions) and AVX (Advanced Vector Extensions).

Idle States

Idle States (C-states) are used to save power when the processor is idle. C0 is the operational state, meaning that the CPU is doing useful work. C1 is the first idle state, C2 the second, and so on, where more power saving actions are taken for numerically higher C-states.

Enhanced Intel SpeedStep® Technology

Enhanced Intel SpeedStep® Technology is an advanced means of enabling high performance while meeting the power-conservation needs of mobile systems. Conventional Intel SpeedStep® Technology switches both voltage and frequency in tandem between high and low levels in response to processor load. Enhanced Intel SpeedStep® Technology builds upon that architecture using design strategies such as Separation between Voltage and Frequency Changes, and Clock Partitioning and Recovery.

Thermal Monitoring Technologies

Thermal Monitoring Technologies protect the processor package and the system from thermal failure through several thermal management features. An on-die Digital Thermal Sensor (DTS) detects the core"s temperature, and the thermal management features reduce package power consumption and thereby temperature when required in order to remain within normal operating limits.

Intel® Identity Protection Technology ‡

Intel® Identity Protection Technology is a built-in security token technology that helps provide a simple, tamper-resistant method for protecting access to your online customer and business data from threats and fraud. Intel® IPT provides a hardware-based proof of a unique user’s PC to websites, financial institutions, and network services; providing verification that it is not malware attempting to login. Intel® IPT can be a key component in two-factor authentication solutions to protect your information at websites and business log-ins.

Intel® Stable Image Platform Program (SIPP)

The Intel® Stable Image Platform Program (Intel® SIPP) aims for zero changes to key platform components and drivers for at least 15 months or until the next generational release, reducing complexity for IT to effectively manage their computing endpoints.
Learn more about Intel® SIPP

Intel® AES New Instructions

Intel® AES New Instructions (Intel® AES-NI) are a set of instructions that enable fast and secure data encryption and decryption. AES-NI are valuable for a wide range of cryptographic applications, for example: applications that perform bulk encryption/decryption, authentication, random number generation, and authenticated encryption.

Secure Key

Intel® Secure Key consists of a digital random number generator that creates truly random numbers to strengthen encryption algorithms.

Intel® Software Guard Extensions (Intel® SGX)

Intel® Software Guard Extensions (Intel® SGX) provide applications the ability to create hardware enforced trusted execution protection for their applications’ sensitive routines and data. Intel® SGX provides developers a way to partition their code and data into CPU hardened trusted execution environments (TEE’s).

Intel® Memory Protection Extensions (Intel® MPX)

Intel® Memory Protection Extensions (Intel® MPX) provides a set of hardware features that can be used by software in conjunction with compiler changes to check that memory references intended at compile time do not become unsafe at runtime due to buffer overflow or underflow.

Intel® Trusted Execution Technology ‡

Intel® Trusted Execution Technology for safer computing is a versatile set of hardware extensions to Intel® processors and chipsets that enhance the digital office platform with security capabilities such as measured launch and protected execution. It enables an environment where applications can run within their own space, protected from all other software on the system.

Execute Disable Bit ‡

Execute Disable Bit is a hardware-based security feature that can reduce exposure to viruses and malicious-code attacks and prevent harmful software from executing and propagating on the server or network.

Intel® Boot Guard

Intel® Device Protection Technology with Boot Guard helps protect the system’s pre-OS environment from viruses and malicious software attacks.

Дата выпуска продукта.

Литография

Литография указывает на полупроводниковую технологию, используемую для производства интегрированных наборов микросхем и отчет показывается в нанометре (нм), что указывает на размер функций, встроенных в полупроводник.

Количество ядер

Количество ядер - это термин аппаратного обеспечения, описывающий число независимых центральных модулей обработки в одном вычислительном компоненте (кристалл).

Количество потоков

Поток или поток выполнения - это термин программного обеспечения, обозначающий базовую упорядоченную последовательность инструкций, которые могут быть переданы или обработаны одним ядром ЦП.

Базовая тактовая частота процессора

Базовая частота процессора - это скорость открытия/закрытия транзисторов процессора. Базовая частота процессора является рабочей точкой, где задается расчетная мощность (TDP). Частота измеряется в гигагерцах (ГГц) или миллиардах вычислительных циклов в секунду.

Максимальная тактовая частота с технологией Turbo Boost

Максимальная тактовая частота в режиме Turbo - это максимальная тактовая частота одноядерного процессора, которую можно достичь с помощью поддерживаемых им технологий Intel® Turbo Boost и Intel® Thermal Velocity Boost. Частота измеряется в гигагерцах (ГГц) или миллиардах вычислительных циклов в секунду.

Кэш-память

Кэш-память процессора - это область быстродействующей памяти, расположенная в процессоре. Интеллектуальная кэш-память Intel® Smart Cache указывает на архитектуру, которая позволяет всем ядрам совместно динамически использовать доступ к кэшу последнего уровня.

Частота системной шины

Шина - это подсистема, передающая данные между компонентами компьютера или между компьютерами. В качестве примера можно назвать системную шину (FSB), по которой происходит обмен данными между процессором и блоком контроллеров памяти; интерфейс DMI, который представляет собой соединение "точка-точка" между встроенным контроллером памяти Intel и блоком контроллеров ввода/вывода Intel на системной плате; и интерфейс Quick Path Interconnect (QPI), соединяющий процессор и интегрированный контроллер памяти.

Расчетная мощность

Расчетная тепловая мощность (TDP) указывает на среднее значение производительности в ваттах, когда мощность процессора рассеивается (при работе с базовой частотой, когда все ядра задействованы) в условиях сложной нагрузки, определенной Intel. Ознакомьтесь с требованиями к системам терморегуляции, представленными в техническом описании.

Доступные варианты для встраиваемых систем

Доступные варианты для встраиваемых систем указывают на продукты, обеспечивающие продленную возможность приобретения для интеллектуальных систем и встроенных решений. Спецификация продукции и условия использования представлены в отчете Production Release Qualification (PRQ). Обратитесь к представителю Intel для получения подробной информации.

Макс. объем памяти (зависит от типа памяти)

Макс. объем памяти означает максимальный объем памяти, поддерживаемый процессором.

Типы памяти

Процессоры Intel® поддерживают четыре разных типа памяти: одноканальная, двухканальная, трехканальная и Flex.

Макс. число каналов памяти

От количества каналов памяти зависит пропускная способность приложений.

Макс. пропускная способность памяти

Макс. пропускная способность памяти означает максимальную скорость, с которой данные могут быть считаны из памяти или сохранены в памяти процессором (в ГБ/с).

Поддержка памяти ECC ‡

Поддержка памяти ECC указывает на поддержку процессором памяти с кодом коррекции ошибок. Память ECC представляет собой такой типа памяти, который поддерживает выявление и исправление распространенных типов внутренних повреждений памяти. Обратите внимание, что поддержка памяти ECC требует поддержки и процессора, и набора микросхем.

Встроенная в процессор графика ‡

Графическая система процессора представляет собой интегрированную в процессор схему обработки графических данных, которая формирует работу функций видеосистемы, вычислительных процессов, мультимедиа и отображения информации. Системы HD-графики Intel®, Iris™ Graphics, Iris Plus Graphics и Iris Pro Graphics обеспечивают расширенное преобразование медиа-данных, высокие частоты кадров и возможность демонстрации видео в формате 4K Ultra HD (UHD). Для получения дополнительной информации см. страницу Технология Intel® Graphics .

Графика Базовая частота

Базовая частота графической системы - это номинальная/гарантированная тактовая частота рендеринга графики (МГц).

Макс. динамическая частота графической системы

Макс. динамическая частота графической системы - это максимальная условная частота рендеринга (МГц), поддерживаемая HD-графикой Intel® с функцией Dynamic Frequency.

Макс. объем видеопамяти графической системы

Максимальное количество памяти, доступное для графической системы процессора. Графическая система процессора использует ту же память, что и сам процессор (с учетом ограничений для ОС, драйвера и системы т.д).

Вывод графической системы

Вывод графической системы определяет интерфейсы, доступные для взаимодействия с отображениями устройства.

Поддержка 4K

Поддержка 4K определяет способность продукта воспроизводить данные с разрешением, как минимум, 3840 x 2160.

Макс. разрешение (HDMI 1.4)‡

Максимальное разрешение (HDMI) - максимальное разрешение, поддерживаемое процессором через интерфейс HDMI (24 бита на пиксель с частотой 60 Гц). Системное разрешение или разрешение экрана зависит от нескольких факторов дизайна системы, а именно, фактическое разрешение в системе может быть ниже.

Макс. разрешение (DP)‡

Максимальное разрешение (DP) - максимальное разрешение, поддерживаемое процессором через интерфейс DP (24 бита на пиксель с частотой 60 Гц). Системное разрешение или разрешение экрана зависит от нескольких факторов дизайна системы, а именно, фактическое разрешение в системе может быть ниже.

Макс. разрешение (eDP - встроенный плоский экран)

Максимальное разрешение (встроенный плоский экран) - максимальное разрешение, поддерживаемое процессором для встроенного плоского экрана (24 бита на пиксель с частотой 60 Гц). Системное разрешение или разрешение экрана зависит от нескольких факторов дизайна системы; фактическое разрешение на устройстве может быть ниже.

Макс. разрешение (VGA)‡

Максимальное разрешение (VGA) - максимальное разрешение, поддерживаемое процессором через интерфейс VGA (24 бита на пиксель с частотой 60 Гц). Системное разрешение или разрешение экрана зависит от нескольких факторов дизайна системы, а именно, фактическое разрешение в системе может быть ниже.

Поддержка DirectX*

DirectX указывает на поддержку конкретной версии коллекции прикладных программных интерфейсов (API) Microsoft для обработки мультимедийных вычислительных задач.

Поддержка OpenGL*

OpenGL (Open Graphics Library) - это язык с поддержкой различных платформ или кроссплатформенный прикладной программный интерфейс для отображения двухмерной (2D) и трехмерной (3D) векторной графики.

Intel® Quick Sync Video

Технология Intel® Quick Sync Video обеспечивает быструю конвертацию видео для портативных медиапроигрывателей, размещения в сети, а также редактирования и создания видео.

Технология InTru™ 3D

Технология Intel® InTRU™ 3D позволяет воспроизводить трехмерные стереоскопические видеоматериалы в формате Blu-ray* с разрешением 1080p, используя интерфейс HDMI* 1.4 и высококачественный звук.

Технология Intel® Clear Video HD

Технология Intel® Clear Video HD, как и предшествующая ее появлению технология Intel® Clear Video, представляет собой набор технологий кодирования и обработки видео, встроенный в интегрированную графическую систему процессора. Эти технологии делают воспроизведение видео более стабильным, а графику - более четкой, яркой и реалистичной. Технология Intel® Clear Video HD обеспечивает более яркие цвета и более реалистичное отображение кожи благодаря улучшениям качества видео.

Технология Intel® Clear Video

Технология Intel® Clear Video представляет собой набор технологий кодирования и обработки видео, встроенный в интегрированную графическую систему процессора. Эти технологии делают воспроизведение видео более стабильным, а графику - более четкой, яркой и реалистичной.

Редакция PCI Express

Редакция PCI Express - это версия, поддерживаемая процессором. PCIe (Peripheral Component Interconnect Express) представляет собой стандарт высокоскоростной последовательной шины расширения для компьютеров для подключения к нему аппаратных устройств. Различные версии PCI Express поддерживают различные скорости передачи данных.

Конфигурации PCI Express ‡

Конфигурации PCI Express (PCIe) описывают доступные конфигурации каналов PCIe, которые можно использовать для привязки каналов PCH PCIe к устройствам PCIe.

Макс. кол-во каналов PCI Express

Канал PCI Express (PCIe) состоит из двух пар каналов сигнализации, один из которых предназначен для приема, а другой - для передачи данных, и этот канал является базовым модулем шины PCIe. Число каналов PCI Express представляет собой общее число каналов, поддерживаемых процессором.

Поддерживаемые разъемы

Разъемом называется компонент, которые обеспечивает механические и электрические соединения между процессором и материнской платой.

Спецификации системы охлаждения

Эталонные спецификации систем охлаждения Intel для надлежащей эксплуатации данной товарной позиции.

T CASE

Критическая температура - это максимальная температура, допустимая в интегрированном теплораспределителе (IHS) процессора.

Поддержка памяти Intel® Optane™ ‡

Память Intel® Optane™ представляет собой новый революционный класс энергонезависимой памяти, работающей между системной памятью и устройствами хранения данных для повышения системной производительности и оперативности. В сочетании с драйвером технологии хранения Intel® Rapid она эффективно управляет несколькими уровнями систем хранения данных, предоставляя один виртуальный диск для нужд ОС, обеспечивая тем самым хранение наиболее часто используемой информации на самом быстродействующем уровне хранения данных. Для работы памяти Intel® Optane™ необходимы специальная аппаратная и программная конфигурации. Чтобы узнать о требованиях к конфигурации, посетите сайт www.intel.com/OptaneMemory .

Технология Intel® Turbo Boost ‡

Технология Intel® Turbo Boost динамически увеличивает частоту процессора до необходимого уровня, используя разницу между номинальным и максимальным значениями параметров температуры и энергопотребления, что позволяет увеличить эффективность энергопотребления или при необходимости «разогнать» процессор.

Соответствие платформе Intel® vPro™ ‡

Технология Intel® vPro™ представляет собой встроенный в процессор комплекс средств управления и обеспечения безопасности, предназначенный для решения задач в четырех основных областях информационной безопасности: 1) Управление угрозами, включая защиту от руткитов, вирусов и другого вредоносного ПО 2) Защита личных сведений и точечная защита доступа к веб-сайту 3) Защита конфиденциальных личных и деловых сведений 4) Удаленный и местный мониторинг, внесение исправлений, ремонт ПК и рабочих станций.

Технология Intel® Hyper-Threading ‡

Intel® Hyper-Threading Technology (Intel® HT Technology) обеспечивает два потока обработки для каждого физического ядра. Многопоточные приложения могут выполнять больше задач параллельно, что значительно ускоряет выполнение работы.

Технология виртуализации Intel® (VT-x) ‡

Технология Intel® Virtualization для направленного ввода/вывода (VT-x) позволяет одной аппаратной платформе функционировать в качестве нескольких «виртуальных» платформ. Технология улучшает возможности управления, снижая время простоев и поддерживая продуктивность работы за счет выделения отдельных разделов для вычислительных операций.

Технология виртуализации Intel® для направленного ввода/вывода (VT-d) ‡

Технология Intel® Virtualization Technology для направленного ввода/вывода дополняет поддержку виртуализации в процессорах на базе архитектуры IA-32 (VT-x) и в процессорах Itanium® (VT-i) функциями виртуализации устройств ввода/вывода. Технология Intel® Virtualization для направленного ввода/вывода помогает пользователям увеличить безопасность и надежность систем, а также повысить производительность устройств ввода/вывода в виртуальных средах.

Intel® VT-x с таблицами Extended Page Tables (EPT) ‡

Intel® VT-x с технологией Extended Page Tables, известной также как технология Second Level Address Translation (SLAT), обеспечивает ускорение работы виртуализованных приложений с интенсивным использованием памяти. Технология Extended Page Tables на платформах с поддержкой технологии виртуализации Intel® сокращает непроизводительные затраты памяти и энергопотребления и увеличивает время автономной работы благодаря аппаратной оптимизации управления таблицей переадресации страниц.

Intel® TSX-NI

Intel® Transactional Synchronization Extensions New Instructions (Intel® TSX-NI) представляют собой набор команд, ориентированных на масштабирование производительности в многопоточных средах. Эта технология помогает более эффективно осуществлять параллельные операции с помощью улучшенного контроля блокировки ПО.

Архитектура Intel® 64 ‡

Архитектура Intel® 64 в сочетании с соответствующим программным обеспечением поддерживает работу 64-разрядных приложений на серверах, рабочих станциях, настольных ПК и ноутбуках.¹ Архитектура Intel® 64 обеспечивает повышение производительности, за счет чего вычислительные системы могут использовать более 4 ГБ виртуальной и физической памяти.

Набор команд

Набор команд содержит базовые команды и инструкции, которые микропроцессор понимает и может выполнять. Показанное значение указывает, с каким набором команд Intel совместим данный процессор.

Расширения набора команд

Расширения набора команд - это дополнительные инструкции, с помощью которых можно повысить производительность при выполнении операций с несколькими объектами данных. К ним относятся SSE (Поддержка расширений SIMD) и AVX (Векторные расширения).

Состояния простоя

Режим состояния простоя (или C-состояния) используется для энергосбережения, когда процессор бездействует. C0 означает рабочее состояние, то есть ЦПУ в данный момент выполняет полезную работу. C1 - это первое состояние бездействия, С2 - второе состояние бездействия и т.д. Чем выше численный показатель С-состояния, тем больше действий по энергосбережению выполняет программа.

Усовершенствованная технология Intel SpeedStep®

Усовершенствованная технология Intel SpeedStep® позволяет обеспечить высокую производительность, а также соответствие требованиям мобильных систем к энергосбережению. Стандартная технология Intel SpeedStep® позволяет переключать уровень напряжения и частоты в зависимости от нагрузки на процессор. Усовершенствованная технология Intel SpeedStep® построена на той же архитектуре и использует такие стратегии разработки, как разделение изменений напряжения и частоты, а также распределение и восстановление тактового сигнала.

Технологии термоконтроля

Технологии термоконтроля защищают корпус процессора и систему от сбоя в результате перегрева с помощью нескольких функций управления температурным режимом. Внутрикристаллический цифровой термодатчик температуры (Digital Thermal Sensor - DTS) определяет температуру ядра, а функции управления температурным режимом при необходимости снижают энергопотребление корпусом процессора, тем самым уменьшая температуру, для обеспечения работы в пределах нормальных эксплуатационных характеристик.

Технология защиты конфиденциальности Intel® ‡

Технология защиты конфиденциальности Intel® - встроенная технология безопасности, основанная на использовании токенов. Эта технология предоставляет простые и надежные средства контроля доступа к коммерческим и бизнес-данным в режиме онлайн, обеспечивая защиту от угроз безопасности и мошенничества. Технология защиты конфиденциальности Intel® использует аппаратные механизмы аутентификации ПК на веб-сайтах, в банковских системах и сетевых службах, подтверждая уникальность данного ПК, защищает от несанкционированного доступа и предотвращает атаки с использованием вредоносного ПО. Технология защиты конфиденциальности Intel® может использоваться в качестве ключевого компонента решений двухфакторной аутентификации, предназначенных для защиты информации на веб-сайтах и контроля доступа в бизнес-приложения.

Программа Intel® Stable Image Platform (Intel® SIPP)

Программа Intel® Stable Image Platform (Intel ® SIPP) может помочь вашей компании находить и внедрять стандартизированные, стабильные платформы ПК в течение, как минимум, 15 месяцев.

Новые команды Intel® AES

Команды Intel® AES-NI (Intel® AES New Instructions) представляют собой набор команд, позволяющий быстро и безопасно обеспечить шифрование и расшифровку данных. Команды AES-NI могут применяться для решения широкого спектра криптографических задач, например, в приложениях, обеспечивающих групповое шифрование, расшифровку, аутентификацию, генерацию случайных чисел и аутентифицированное шифрование.

Secure Key

Технология Intel® Secure Key представляет собой генератор случайных чисел, создающий уникальные комбинации для усиления алгоритмов шифрования.

Intel® Software Guard Extensions (Intel® SGX)

Расширения Intel® SGX (Intel® Software Guard Extensions) открывают возможности создания доверенной и усиленной аппаратной защиты при выполнении приложениями важных процедур и обработки данных. Такое выполнение осуществляется с защитой от несанкционированного доступа или вмешательства любого другого программного обеспечения (включая привилегированные приложения) в системе.

Команды Intel® Memory Protection Extensions (Intel® MPX)

Расширения Intel® MPX (Intel® Memory Protection Extensions) представляют собой набор аппаратных функций, которые могут использоваться программным обеспечением в сочетании с изменениями компилятора для проверки безопасности создаваемых ссылок памяти во время компиляции вследствие возможного переполнения или недогрузки используемого буфера.

Технология Intel® Trusted Execution ‡

Технология Intel® Trusted Execution расширяет возможности безопасного исполнения команд посредством аппаратного расширения возможностей процессоров и наборов микросхем Intel®. Эта технология обеспечивает для платформ цифрового офиса такие функции защиты, как измеряемый запуск приложений и защищенное выполнение команд. Это достигается за счет создания среды, где приложения выполняются изолированно от других приложений системы.

Функция Бит отмены выполнения ‡

Бит отмены выполнения - это аппаратная функция безопасности, которая позволяет уменьшить уязвимость к вирусам и вредоносному коду, а также предотвратить выполнение вредоносного ПО и его распространение на сервере или в сети.

Intel® Boot Guard

Технология Intel® Device Protection с функциями Boot Guard используется для защиты систем от вирусов и вредоносных программ перед загрузкой операционных систем.

Поделиться