Изменчивость вируса гриппа. Антигенная изменчивость вируса гриппа Высокая изменчивость вируса гриппа обусловлена

Первые упоминания о гриппе были отмечены много веков назад - еще в 412 году до

н.э. описание гриппо-подобного заболевания было сделано Гиппократом. Также

гриппо-подобные вспышки были отмечены в 1173 году. Первая задокументированная

пандемия гриппа, унесшая много

жизней, случилась в 1580 году.

В 1889-1891 гг произошла пандемия средней тяжести, вызванная вирусом типа H3N2.

Печально известная "Испанка", вызванная вирусом H1N1 произошла в 1918-1920 гг.

Это самая сильная из известных пандемий

Унесшая более 20 млн. жизней. От "испанки"

серьезно пострадало 20-40% населения земного шара. Смерть наступала крайне

быстро. Человек мог быть еще абсолютно здоров утором, к полудню он заболевал и

умирал к ночи. Те же, кто не умер в первые дни, часто умирали от осложнений,

вызванных гриппом, например, пневмонии. Необычной особенностью "испанки" было

то, что она часто поражала молодых людей (обычно от гриппа в первую очередь

страдают дети и пожилые лица).

Возбудитель заболевания, вирус гриппа, был открыт Richard Shope в 1931 году.

Вирус гриппа А впервые был идентифицирован английскими вирусологами Smith,

Andrews и Laidlaw (National Institute for Medical Research, Лондон) в 1933

году. Тремя годами позже Francis выделил вирус гриппа В.

В 1940 году было сделано важное открытие - вирус гриппа может быть

культивирован на куриных эмбрионах. Благодаря этому появились новые

возможности для изучения вируса гриппа.

В 1947 году Тейлором был впервые выделен вирус гриппа С.

В 1957-1958 гг случилась пандемия

Которая получила название "азиатский грипп", вызванная вирусом H2N2. Пандемия

началась в феврале 1957 года на Дальнем Востоке и быстро

распространилась по всему миру. Только в США во время этой пандемии скончалось

более 70000 человек.

В 1968-1969 гг произошел средний по тяжести "Гонконгский грипп", вызванный

вирусом H3N2. Пандемия началась в Гонконге в начале 1968 года. Наиболее часто

от вируса страдали пожилые люди старше 65 летнего возраста. Всего число

погибших от этой пандемии составило 33800 человек.

В 1977-1978 гг произошла относительно легкая по степени тяжести пандемия

Названная "русским" гриппом. Вирус гриппа (H1N1), вызвавший эту пандемию

уже вызывал эпидемию в 50-х гг.

Поэтому в первую очередь пострадали лица, родившиеся после 1950 г.

Возбудители гриппа относятся к семейству ортомиксовирусов, включающее 3 рода вирусов гриппа: А, В, С. Вирусы гриппа содержат РНК, наружную оболочку, в которой размещены 2 антигена – гемагглютинин и нейраминидаза, способные менять свои свойства, особенно у вируса типа А. Изменение гемагглютинина и нейраминидазы обусловливает появление новых подтипов вируса, которые вызывают обычно более тяжелые и более массовые заболевания.

Согласно Международной номенклатуре, обозначение штаммов вируса включает следующие сведения: род, место изоляции, номер изолята, год изоляции, разновидность гемагглютинина (Н) и нейраминидазы (N). Например, A/Сингапур/l/57/H2N2 обозначает вирус рода А, выделенный в 1957 г. в Сингапуре, имеющий разновидность антигенов H2N2.

С вирусами рода А связывают пандемии гриппа. Вирусы гриппа В не вызывают пандемий, но локальные “волны” подъема заболеваемости могут захватить одну или несколько стран. Вирусы гриппа С вызывают спорадические случаи заболевания. Вирусы гриппа устойчивы к низким температурам и замораживанию, но быстро погибают при нагревании.

Ортомиксовирусы - вирусы гриппа А, В, С

Структурные особенности.

Ортомиксовирусы являются оболочечными (суперкапсидными, “одетыми”) вирусами, средний размер вирионов - от 80 до 120 нм. Вирионы имеют сферическую форму. Геном представлен однонитевой сегментированной (фрагментированной) негативной РНК. Вирион имеет суперкапсид, содержащий выступающие над мембраной в виде выступов (шипов) два гликопротеида - гемагглютинин (HA) и нейраминидазу (NA). У вирусов гриппа А выделяют 17 антигенно различных типов гемагглютинина и 10 типов нейраминидаз.

Классификация вирусов гриппа основана на отличиях нуклеопротеиновых антигенов (деление на вирусы А, В и С) и поверхностных белков HA и NA. Нуклеопротеид (также называемый S-антигеном) постоянен по своей структуре и определяет тип вируса (А, В или С). Поверхностные антигены (гемагглютинин и нейраминидаза - V-антигены), напротив, изменчивы и определяют разные штаммы одного типа вируса. Изменение гемагглютинина и нейраминидазы обусловливает появление новых подтипов вируса, которые вызывают обычно более тяжелые и более массовые заболевания

Основные функции гемагглютинина:

Распознает клеточный рецептор - мукопептид;

Отвечает за проникновение вириона в клетку, обеспечивая слияние мембран вириона и клетки; (Гемагглютинин обеспечивает способность вируса присоединяться к клетке.)

Его антигены обладают наибольшими протективными свойствами. Изменения антигенных свойств (антигенные дрейф и шифт) способствуют развитию эпидемий, вызванных новыми Аг вариантами вируса (против которых не сформировался в достаточной мере коллективный иммунитет).

Нейраминидаза отвечает за диссеминацию вирионов, совместно с гемагглютинином определяет эпидемические свойства вируса.

Нейраминидаза отвечает, во-первых, за способность вирусной частицы проникать в клетку-хозяина, и, во-вторых, за способность вирусных частиц выходить из клетки после размножения.

Нуклеокапсид состоит из 8 сегментов вРНК и капсидных белков, образующих спиралевидный тяж.

Жизненный цикл вируса.

Репликация ортомиксовирусов первично реализуется в цитоплазме инфицированной клетки, синтез вирусной РНК осуществляется в ядре. В ядре на вРНК синтезируется три типа вирусспецифической РНК: позитивные матричные мРНК (матрица для синтеза вирусных белков), полноразмерная комплементарная кРНК (матрица для синтеза новых негативных вирионных РНК) и негативные вирионные вРНК (геном для вновь синтезируемых вирионов).

Вирусные белки синтезируются на полирибосомах. Далее вирусные белки в ядре связываются с вРНК, образуя нуклеокапсид. Заключительный этап морфогенеза контролируется М - белком. Нуклеокапсид, проходя через мембрану клетки, покрывается вначале М - белком, затем клеточным липидным слоем и суперкапсидными гликопротеинами HA и NA. Цикл репродукции составляет 6-8 часов и завершается отпочковыванием вновь синтезированных вирионов.

Антигенная изменчивость.

(Антигенная изменчивость вирусов гриппа. Изменчивость вируса гриппа общеизвестна. Эта изменчивость антигенных и биологических свойств является фундаментальной особенностью вирусов гриппа типов А и В. Изменения происходят в поверхностных антигенах вируса - гемагглютинине и нейраминидазе. Вероятнее всего это эволюционный механизм приспособляемости вируса для обеспечения выживаемости. Новые штаммы вирусов, в отличие от своих предшественников не связываются специфическими антителами, которые накапливаются в популяции. Существует два механизма антигенной изменчивости: относительно небольшие изменения (антигенный дрейф) и сильные изменения (антигенный шифт).)

Современное разделение ортомиксовирусов на рода (или типы А,В и С) связано с антигенными свойствами главных белков нуклеокапсида (нуклеокапсидный белок - фосфопротеин NP) и матрикса вирусной оболочки (белок М). Кроме отличий по NP и M белкам, ортомиксовирусы отличаются высочайшей антигенной изменчивостью, обусловленной вариабельностью поверхностных белков HA и NA. Выделяют два основных типа изменений - антигенный дрейф и антигенный шифт.

Антигенный дрейф обусловлен точечными мутациями, изменяющими структуру этих белков. Основным регулятором эпидемического процесса при гриппе является популяционный (коллективный) иммунитет. В результате его формирования происходит отбор штаммов с измененной антигенной структурой (прежде всего гемагглютинина), против которых антитела менее эффективны. Антигенный дрейф поддерживает непрерывность эпидемического процесса.

(Антигенный дрейф - происходит в период между пандемиями у всех типов вирусов (А, В и С). Это незначительные изменения в структуре поверхностных антигенов (гемагглютинина и нейраминидазы), вызываемые точечными мутациями в генах, которые их кодируют. Как правило такие изменения происходят каждый год. В результате возникают эпидемии, так как защита от предыдущих контактов с вирусом сохраняется, хоть она и недостаточна.)

Однако у вирусов гриппа А обнаружена и другая форма антигенной изменчивости - антигенный шифт (сдвиг), связанный со сменой одного типа гемагглютинина (или нейраминидазы) на другой, т.е. на появлении нового антигенного варианта вируса. Это наблюдается редко и связано с развитием пандемий. За всю известную историю гриппа выделено только несколько антигенных фенотипов, вызывающих эпидемии гриппа у людей: HoN1, H1N1, H2N2, H3N2, т.е. только три типа гемагглютинина (HA1-3) и два - нейраминидазы (NA 1 и 2). Вирусы гриппа типа В и С вызывают заболевания только у человека, вирусы гриппа А - у человека, млекопитающих и птиц. Наибольшую эпидемическую роль имеют наиболее изменчивые вирусы гриппа А. У вирусов гриппа С отсутствует нейраминидаза, эти вирусы обычно вызывают более легкую клиническую картину.

Существует мнение, что антигенный шифт - результат генетического обмена (рекомбинации) между вирусами гриппа человека и животных. До сих пор окончательно не установлено, где в межэпидемический период - вне человеческой популяции (у птиц или млекопитающих) или в человеческой популяции (благодаря длительной персистенции, локальной циркуляции) сохраняются вирусы, на время исчерпавшие свои эпидемические возможности.

Птиц считают первичными и основными хозяевами вирусов гриппа А, у которых в отличии от человека распространены вирусы со всеми 17 типами HA и 10 типами NA. Дикие утки - естественные хозяева вирусов гриппа А, у которых возбудитель находится в желудочно - кишечном тракте и не приносит хозяевам заметного ущерба. Вирусы проявляют свои патогенные свойства при переходе на других птиц и на млекопитающих. Среди млекопитающих наибольшее значение придают свиньям, которых считают промежуточным хозяином и сравнивают со “смешивающим сосудом”.

(Современные вирусы гриппа человека слабо переходят на животных. Все пандемии гриппа А с 1930г. начинались в Китае, основными воротами распространения является Сибирь (массовые миграции птиц).

Н1N1- 1930г. Выявлен у человека, свиньи, китов (1972г.), домашних и диких птиц. С ним связана знаменитая пандемия “испанки” (испанского гриппа). Этот тип вновь получил распространение с 1977г.

H2N2 выявляется с 1957г. у человека и птиц. Эпидемии, связанные с этими вирусами, приходили периодически. Сейчас оба типа выявляют параллельно.

H3N2 выявлен в 1963г. (Гонконг).

Вирус А/ Сингапур/1 /57 (H2N2) имеет три гена от вирусов гриппа птиц Евразии, вирус А/ Гонконг /1 /68 (H3N2) содержит 6 генов от вируса “Сингапур” и два - от птиц. Эти данные подтверждают, что новые эпидемические типы вирусов гриппа А человечество получает от птиц - первичного хозяина. Ближайший прогноз - возможность появления новых эпидемических вариантов вируса гриппа А, имеющих гемагглютинин HA5 или 7 (достаточно замены одной - двух аминокислот в их структуре).)

Анергия клональная – состояние функциональной ареактивности отдельных клонов лимфоцитов на специфические антигены.

Антиген-антитело комплекс (иммунный комплекс) – продукт реакции антиген-антитело. Имеет большое значение в патогенезе многих заболеваний.

Антиген-антитело реакция – специфическое взаимодействие антигена с соответствующим антителом.

Антигенная изменчивость – изменение специфических поверхностных антигенов организма в пределах биологического вида. Наиболее интенсивно проявляется у вирусов гриппа.

Антигенная модуляция – исчезновение поверхностных антигенов под влиянием антител.

Антигенная специфичность – структурные особенности, отличающие определенный антиген от индивидуального, антигенного состава иммунизируемого организма; антигенная специфичность не подразумевает способность носителей этой специфичности вызывать иммунный ответ; гаптены обладают антигенной специфичностью, реагируя с предсуществующими антителами, но сами не могут вызывать их образование. Антигенная специфичность придает антигену способность избирательно реагировать со специфическими антителами или сенсибилизированными лимфоцитами.

Антигенность – способность вещества к специфическому взаимодействию с продуктами иммунного ответа.

Антигенные детерминанты (эпитопы) – специфические участки молекулы антигена, к которым вырабатываются специфические антитела, и с которыми реагируют продукты иммунного ответа.

Антигенный дрейф – постепенное изменение антигенной специфичности структур вирусов (HA и NA), происходящее в течение нескольких лет, обусловленное спонтанными точечными мутациями.

Антигенный шифт – изменения всей антигенной структуры гемагглютинина или нейраминидазы. Этот процесс приводит к появлению новых подтипов вирусов. В основе антигенного шифта лежат механизмы генетической рекомбинации между отдельными подтипами вирусов.

Антигенпрезентирующие клетки – высокоспециализированные клетки, способные к поглощению и переработке антигена, а также представлению пептидных антигенных фрагментов на клеточной поверхности в комплексе с молекулами I или II классов ГКГ; основные антигенпрезентирующие клетки: макрофаги, дендритные клетки, В-лимфоциты.

Антигенраспознающий В-клеточный рецептор (поверхностный иммуноглобулин – sIg) – поверхностная мономерная форма иммуноглобулина, относящегося к классу IgM; способен взаимодействовать со свободным антигеном, не связанным с какими-либо дополнительными молекулами.

Антигенраспознающий Т-клеточный рецептор (ТКР) -гетеродимер, экспрессирующийся на поверхности Т-клеток в комплексе с однодоменными СЗ-белками; основная функция – распознавание иммуногена (антигенный пептид+молекулы I или II классов ГКГ) на поверхности антигенпрезентирующей или вирусинфицированной клетки.

Антигены – вещества, индуцирующие иммунный ответ.
Антигены гистосовместимости (HLA) – антигены, кодируемые главным комплексом гистосовместимости. Антигены гистосовместимости способствуют распознаванию чужеродных антигенов, играют решающую роль в кооперации иммунокомпетентных клеток при развитии гуморального и клеточного иммунитета, являются основными структурами в реализации реакций трансплантационного иммунитета. Представлены молекулами двух классов.

Антигены синтетические – искусственно синтезированные антигены.

Антигены Т-зависимые – антигены, развитие иммунной реакции на которые требует участия Т-лимфоцитов хелперов.

Антигены Т-независимые – антигены, развитие иммунной реакции на которые не требует участия Т-лимфоцитов хелперов.

Антисыворотка – сыворотка, содержащая специфические антитела.

Антитела – иммунные белки, образующиеся в организме в ответ на поступление антигена и обладающие способностью специфически взаимодействовать с ним.

Антитела иммунные – антитела, выработанные организмом в результате перенесенной инфекции или выработанные в ответ на иммунизацию каким-либо антигеном.

Антитела моноклональные – антитела, вырабатываемые одним клоном антителопродуцентов. Это антитела одного класса, подкласса и одной специфичности. Обычно вырабатываемые в организме в ответ на антигенную стимуляцию антитела являются продуктами деятельности нескольких клонов антителопродуцентов.

Антитела нормальные – антитела, содержащиеся в сыворотке здоровых лиц, продукция которых не связана с перенесенной инфекцией или какой-либо иммунизацией.

Антикоагулянты – препараты для профилактики тромбов в островном при при мерцательной аритмии.

Антителозависимая клеточная цитотоксичность (АЗКЦ) – разрушение клеток-мишеней, покрытых антителами, эффекторными клетками, имеющими Fc-рецептор.

У вируса гриппа описаны 2 антигенных комплекса:

· S-антиген (растворимый, от лат. solution – растворять) представлен белками нуклеокапсида, является типоспецифическим, отличается стабильностью, неинфекционен (белок NР способен связывать комплемент, поэтому выявляется в РСК).

· V-антиген (от лат. viral – вирусный) – штаммоспецифический, состоит из гемагглютинина и нейраминидазы, располагается на шипиках, определяет вирулентность (выявляется в РТГА).

Изменчивость вирусов гриппа .

Внутренние структуры вируса экранизированы от действия внешней среды и не изменяются. Изменчивость присуща антигенам суперкапсида, причем гемагглютинины и нейраминидаза изменяются независимо друг от друга благодаря 2 генетическим механизмам – дрейфу и шифту.

Антигенный дрейф (от англ. drift – медленное течение) вызывает незначительные изменения, обусловленные точечной мутацией в большей степени в структуре гемагглютинина. Это приводит к развитию штаммовых различий, которые не выходят за пределы подтипа. В результате антигенного дрейфа могут возникать эпидемии (частота – через каждые 1-3 года).

Шифт (от англ. shift –скачок) – это полная замена гена, которая приводит к появлению нового антигенного варианта вируса. Полагают, что шифт – это результат генетической рекомбинации, т.е. обмена генетической информации между вирусами человека и животных, попавших в одну клетку, который приводит к смене подтипа Н или N (а иногда – обоих). Такая изменчивость может привести к появлению новых вариантов вирусов, способных вызывать пандемию (частота – каждые 10-20-40 лет).

Вирусы гриппа В и С лишены шифтовой изменчивости, поэтому вирус гриппа В вызывает эпидемии , а вирус гриппа С спорадические заболевания или небольшие вспышки.

Особенности репродукция вируса .

1. Адсорбция на рецепторах чувствительных клеток, содержащих сиаловую кислоту, с помощью гемагглютининов.

2. Проникновение в клетку путем рецепторного эндоцитоза с последующим слиянием мембран вируса со стенкой клеточной вакуоли и образованием эндосомы.

3. Депротеинизация: вирус освобождается сначала от суперкапсида, затем – и от капсидных белков.

4. Эклипс-фаза (репликация НК и синтез вирусных белков): вирусная РНК проникает в цитоплазму клетки, затем – в ядро, где имеется продукт, необходимый для транскрипции и трансляции. Здесь синтезируется РНК. Капсидные белки NP, P1, Р2, P3 и М синтезируются в цитоплазме на рибосомах.

5. Сборка нуклеокапсида происходит в цитоплазме клетки (РНК и вирусные белки узнают друг друга и самособираются).

6. Выход из клетки осуществляется путем почкования или взрыва (лизиса), при этом из цитоплазматической мембраны клетки образуется суперкапсид.

Первые данные о вирусе гриппа получены при выделении вируса от больного в 1933 г. (Smith W. et al., 1933). Выделенный изолят вируса и подобные ему (со сходными свойствами) были названы вирусом гриппа типа А. Впоследствии этот тип вируса постоянно выявляли в период сезонных эпидемий гриппа, которые он вызывал. В 1940 г. был идентифицирован вирус гриппа типа В, который признан вторым по важности вирусом, выделяемым во время эпидемий (Francis T., 1940; Frank A.L. et al., 1983). Вирус, выделенный от больного гриппом в 1949 г., не относился ни к типу А, ни к типу В, и был обозначен как вирус гриппа типа С (Francis T. et al., 1950). Течение заболевания, вызванного вирусом гриппа типа С, не было тяжелым, а его активность не подчинялась законам сезонных эпидемий (Shaw M.W. et al., 1992).

Вирусы гриппа типов А и В представляют род Orthomyxovirus в составе семейства Orthomyxoviridae. Геном вируса гриппа представлен односетевой сегментированной РНК, каждый сегмент имеет самостоятельную транскрипцию (табл. 1).

Как показано на рис. 1, на поверхности сферических или филаментных вирионов гриппа имеются «шипы», которые представляют собой поверхностные гликопротеины: гемагглютинин (H) и нейраминидазу (N). Вирусы гриппа типа А описаны по номенклатуре, включающей биологического хозяина, географическое происхождение, номер штамма и год его выделения. Антигенная классификация H и N дана в скобках, например, А/Гонконг/1/68(H 3 N 2). Всего насчитывается 14 антигенных подтипов гемагглютинина (H 1 — H 1 4) и 9 подтипов нейраминидазы (N 1 — N9).

Таблица 1
Реализация генетической информации вируса гриппа

Сегмент РНК Продукты генов Функции
1 Полимераза (PB2) Полимеразный комплекс, участвую-щий в транскрипции и репликации РНК
2 Полимераза (PB1)
3 Полимераза (PA)
4 Гемагглютинин (H) Прикрепление к специфическим рецепторам на поверхности клетки
5 Нуклеопротеин (NP) Основной компонент рибонуклео-протеинового (РНП) комплекса в вирионе и инфицированной клетке
6 Нейраминидаза (N) Фермент, уничтожающий рецепторы
7 Матрикс (M1) Матрикс (M2) Матричный белок мембраны Трансмембранный белок (только в типе А)
8 Неструктурный (NS1) Неструктурный (NS2) Неструктурный белок Неструктурный белок

Все подтипы обнаруживают у водоплавающих птиц, и только некоторые из них — у человека (H 1 N 1 , H 2 N 2 , H 3 N 2), свиней и лошадей (Hinshaw V.S., Webster R.G., 1992). Подобные подтипы отсутствуют у вируса гриппа типа В.

1.1. Поверхностные белки

1.1.1. Гемагглютинин

Гликопротеин (Н), содержание которого составляет до 25% всего вирусного белка, выполняет по крайней мере три функции: а) прикрепление вируса к специфическим рецепторам на клеточной мембране; б) слияние вириона и клетки при вхождении в последнюю вируса; в) обеспечение «площадки», к которой преимущественно прикрепляются антитела, нетрализующие инфекционность вируса гриппа (Ada G.L., Jones P.D., 1986). Молекула Н присутствует в вирионе в виде тримера. Каждый мономер представлен двумя полипептидами, НА1 и НА2, соединенных одной дисульфидной связью. Дистальный отрезок полипептида НА1 содержит активные центры для связывания с рецепторами и антителами. Вариации в активных центрах, предназначенных для связывания с антителами, являются в основном причиной частых вспышек гриппа и неудач в постоянном контроле над вирусом методом активной иммунизации (Webster R.G. et al., 1982). В отличие от вариабельности НА1, полипептид НА2 является достаточно неизменчивым (Krystal M., 1982).

1.1.2. Нейраминидаза

Шипы N вириона представляют собой тетрамеры, закрепленные в липидном бислое вируса. Нейраминидаза обладает активностью, направленной на уничтожение рецепторов, и предотвращает агрегацию незрелых вирионов, что в значительной степени снижает их инфекционность (Palese P., 1974).

Антинейраминидазные антитела угнетают высвобождение незрелых вирусных частиц из инфицированной клетки путем образования перекрестных связей между почкующимися вирионами. Присутствие антинейраминидазных антител обратно пропорционально коррелирует с заболеваемостью и тяжестью клинических проявлений инфекции (Schulman I.L., 1975; Ada G.L., Jones P.D., 1986). На основании этих данных появилась концепция «нейраминидазоспецифической вакцины» (Couch R.B. et al., 1974).

1.2. Внутренние белки

Нуклеопротеин (NP) — один из типоспецифичных антигенов, по которому отличаются вирусы типов А, В и С. Принадлежит к основным антигенам, на которые направлена активность цитотоксических Т-лимфоцитов — ЦТЛ (Tite I.P. et al., 1988). Мембрана матричного белка М1 также является типоспецифичным антигеном вириона. Ее роль в индукции иммунитета не выяснена (Webster R.G. et al., 1982). Второй полипептид — М2, кодируемый геномом 7, определенным образом связан c резистентностью к противовирусному препарату амантадину (Hay A.I. et al., 1985). Полимеразные белки (РА, РВ1 и РВ2) транскрибируют вирусную РНК и, вероятно, не имеют существенного значения в выработке иммунитета.

Неструктурные белки (NS1, NS2) кодируются самым маленьким сегментом РНК и, вероятно, не участвуют в формировании иммунного ответа.

2. Молекулярная генетика вируса гриппа

2.1. Антигенный шифт

Сегментированная природа генома вируса гриппа ответственна за значительные вариации, которые возможны как в генотипе, так и в фенотипе (табл. 2, 3) (Palese P., Kingsbury D.W., 1983). При инфицировании клетки более чем одним штаммом в ней может образоваться потомство вирусов с новыми сочетаниями генов. Этот процесс, который может происходить как в природных условиях, так и в лаборатории, называется рекомбинацией, или пересортировкой (reassortment) (Webster R.G. et al., 1971). При таком антигенном шифте (дословно с англ. «сдвиг») происходит обмен участками генома, кодирующими H и N.

Таблица 2
Изменчивость вируса гриппа

Пандемические штаммы вируса гриппа А возникают при пересортировке генов человеческих и животных штаммов при одновременном инфицировании промежуточного хозяина, возможно, свиньи, которая служит как бы «смешивающим сосудом» (Hinshaw V.S. et al., 1978; Scholtissek C. et al., 1985).

2.2. Антигенный дрейф

Менее радикальные изменения — антигенный дрейф компонентов H и N возникают при точечных мутациях в генах, вследствие которых накапливаются изменения в последовательностях аминокислот, что в свою очередь приводит к изменению активных центров антигена, при которых они перестают распознаваться иммунной системой хозяина.

Повторное возникновение подтипа гриппа А (H 1 N 1) в 1977 г. стало иллюстрацией феномена рециркуляции, потому что штаммы, выделенные в Северном Китае, имели выраженное сходство со штаммами, циркулировавшими в 1950 г. (Scholtissek C. et al., 1978).

Вариабельность Н может также проявляться в период адаптации вируса гриппа к куриному эмбриону (Schild G.C. et al., 1983; Robertson J.S. et al., 1987). Поскольку вирус гриппа, используемый в качестве вакцины, культивируется в куриных эмбрионах, возник вопрос, не будут ли изменения антигенности достаточными для того, чтобы снизить защитные свойства вакцины по отношению циркулирующих человеческих штаммов. Однако экспериментальные данные свидетельствовали, что штаммы вируса А (H 3 N 2), выращенные как в куриных эмбрионах, так и в клетках млекопитающих, у человека индуцируют одинаковые защитные свойства при его контакте с вирусом (Katz J.C. et al., 1987).

Природа иммунного ответа на вакцинацию

Гуморальный (антительный) ответ

Существуют доказательства того, что антитела в сыворотке крови, определяемые методами торможения гемагглютинации, нейтрализации инфекционности и угнетения N, являются хорошими прогностическими факторами резистентности конкретного индивидуума к инфекции. Сывороточные антитела, иммуноглобулины класса G (IgG) к Н играют основную роль в защите от гриппа (Potter C.W., Oxford J.S., 1979; Ada G.L., Jones P.D., 1986). В высоких концентрациях обеспечивают полную защиту. В более низких концентрациях предотвращают развитие или ослабляют проявления заболевания после заражения у значительного количества больных. Антигемагглютининовый титр (1:40) или (1:32) многие авторы (Hobson D. et al., 1972; Longini I.M. et al., 1988; Davis J.R., Grillis E.A., 1989) определяют как защитный порог. Результаты полевых исследований свидетельствуют, что предсуществующие контакту с вирусом титры, превышающие это значение, обеспечивают по крайней мере частичную защиту.

Таким образом, определение уровней сывороточных антигемагглютининов может рассматриваться в качестве индикатора уровня иммунитета против гриппа.

Достоверную выработку антител иногда регистрировали уже через 4 дня после вакцинации взрослых, контактировавших ранее с вирусом (Zuckerman M.A. et al., 1991). Несмотря на данные о чрезвычайно быстром ответе и высоких уровнях защиты, высокий защитный уровень антител возникает в течение 14 дней после вакцинации (Pyhala R. et al., 1993). Время действия защитных уровней иммунитета после вакцинации инактивированной вакциной редко превышает 1 год, что важно в практическом отношении (Clark A. et al., 1983).

Состав выработанных в ответ на вакцинацию антител зависит главным образом от предыдущих контактов пациента с антигеном. Пациенты, примированные одними подтипами вируса в детстве, по-разному реагируют на гомологичную или гетерологичную инфекцию или вакцинацию впоследствии, по сравнению с теми, у кого был контакт с другими подтипами вируса (Davenport F.M. et al., 1953; Francis T. et al., 1953; Webster R.G., 1966). Этот феномен может повлиять на часть вакцинированных, но ни в коем случае не может быть причиной отказа от ежегодной вакцинации, поскольку новые антитела обеспечивают защиту от эпидемического демические штаммы вируса гриппа А возникают при пересортировке генов человеческих и животных штаммов при одновременном инфицировании промежуточного хозяина, возможно, свиньи, которая служит как бы «смешивающим сосудом» (Hinshaw V.S. et al., 1978; Scholtissek C. et al., 1985).

Со времени выделения первого вируса гриппа произошло два крупных антигенных шифта у вируса гриппа А человека, не учитывая повторное возникновение штаммов этого вируса А (H 1 N 1) в 1977 г. В ретроспективных сероэпидемиологических исследованиях выявлены подтипы эпидемических штаммов, которые циркулировали до 1933 г. (Masurel N. et al., 1973). Установлено также, что вирусы гриппа типов B и C не подвергаются антигенным шифтам, возможно, потому, что они не имеют животного резервуара, в отличие от типа вируса гриппа А. Антигенные шифты возникают через нерегулярные промежутки времени — 10-40 лет.

Местный антительный ответ

Применение инактивированных вакцин обычно не приводит к выработке IgA в верхних дыхательных путях, но ведет к образованию IgG антител в верхних и нижних дыхательных путях (Clements M.L., Murphy B.R., 1986). Местный иммунный ответ, заключающийся в выработке IgG, отмечен у 94% примированных пациентов после введения инактивированной вакцины, антител класса IgA — только у 38% (Zahradnik J.M. et al., 1983; Clements M.L. et al., 1986).

Влияние возраста на иммунный ответ

По результатам многочисленных наблюдений предполагают, что иммунный ответ после вакцинации от гриппа может снижаться с возрастом. Считают, что иммунодефицит, связанный со старением, зависит от постепенной инволюции вилочковой железы, что приводит к недостаточной выработке Т-клеток, в то время как В-клетки остаются интактными (Thomas M.L., Weigle W.O., 1989). Полагают также, что функция Т-клеток снижается у лиц пожилого возраста, поэтому как количество, так и качество Тх с возрастом может изменяться. Так, выявлено снижение выработки интерлейкина-2 (IL-2) с возрастом в ответ на введение вакцины против гриппа (Huang J.P. et al., 1992).

Опубликованы данные о снижении эффективности вакцины против гепатита В в пожилом возрасте, что также подтверждает предположение о возрастном снижении иммунного ответа (Denis F. et al., 1984). Однако у большинства привитых больных гепатитом В, проживающих в Северном полушарии, не было недавних контактов с этим вирусом, а у лиц пожилого возраста отмечен один контакт или более с одним или несколькими типами или подтипами вируса гриппа, циркулирующими в течение их жизни. Таким образом, вакцинация действует как бустер и активирует клоны предсуществующих В-клеток памяти.

С возрастом происходят и изменения в подклассах вырабатываемых антител. Ухудшение с возрастом выработки антител класса IgG1 может быть причиной более низкой эффективности вакцины, отмеченной по крайней мере в нескольких исследованиях у пациентов пожилого возраста по сравнению с таковой у молодых (Hocart M.J. et al., 1990; Remarque E.J. et al., 1993; Powers D.C., 1994). Антитела IgG1 — наиболее эффективный подкласс, способствующий активации комплемента и нейтрализации вируса. Гемагглютинин-ингибирующая активность коррелирует больше с титрами IgG1, чем с любым другим изотипом IgG (Burton D. et al., 1986). Активированные лимфоциты, полученные от лиц пожилого возраста, секретируют меньше IL-2, чем IL-4, IL-6 и гамма-интерферона по сравнению с клетками, полученными у лиц молодого возраста (контроль) (Daynes R.A. et al., 1993). Изменения в профиле цитокинов могут быть ответственны за возрастные изменения в относительных количествах специфических антител подклассов IgG. В нескольких работах исследовали ответ ЦТЛ на введение вакцины для профилактики гриппа в пожилом возрасте (Gorse G.J., Belshe R.B., 1990; Powers D.C., Belshe R.B., 1993).

При сравнительном исследовании клеточного иммунного ответа у лиц пожилого возраста отмечали достоверно более низкие исходные и пиковые поствакцинальные уровни специфического лизиса аутологичных клеток-мишеней, инфицированных вирусом гриппа типа А, однако ЦТЛ-опосредованный ответ был сравним с таковым у взрослых молодого возраста. Гриппо-специфическая ЦТЛ-активность снижалась у пожилых лиц через 3 мес после вакцинации (Powers D.C., Belshe R.B., 1993). Наблюдаемая ограниченная персистенция ЦТЛ-памяти у привитых лиц пожилого возраста может иметь некоторое значение вследствие наличия интервала между введением вакцины поздней осенью и сезоном эпидемии гриппа в зимний период.

Эпидемиология гриппа

Гриппозная инфекция у человека определяется сложными взаимодействиями нескольких факторов, включая вирулентность и генетическую специфичность вируса, иммунитет хозяина и, возможно, как генетические факторы, так и факторы внешней среды, которые влияют на передачу вируса в человеческой популяции (Hemmes J.H. et al., 1960). Для гриппа характерна определенная сезонность с наивысшей активностью зимой и ранней весной. Факторы окружающей среды в этот период могут иметь значение для передачи вируса гриппа (Ghendon Y., 1991). В тропиках эпидемии гриппа происходят в сезон дождей. Основная активность эпидемического процесса наблюдается во время случайных пиков, спорадическая активность — на протяжении всего года; эндемическая персистенция между эпидемиями является хорошо задокументированным фактом (Ghendon Y., 1991).

Повышенная заболеваемость гриппом в закрытых коллективах (дома престарелых) обусловлена скученностью. Вирус гриппа передается воздушно-капельным путем (при кашле или чиханьи), поэтому частые контакты лиц в закрытых коллективах, совместное питание и проживание способствуют перекрестной инфекции (Longini I.M. et al., 1982).

В большинстве исследований установлено, что уровень заболеваемости детей дошкольного и школьного возраста гораздо выше, чем взрослых (Monto A.S., Kiomehr F., 1975). Следовательно, семьи, в которых есть дети, страдают от гриппа значительно больше. Поэтому вакцинация детей, проживающих в непосредственном контакте с лицами из групп высокого риска, такими, как пожилые, рекомендуется для снижения вероятности передачи вируса этим лицам (Immunization Practices Advisory Committee (ACIP), 1992).

По данным исследований эпидемических процессов, частота возникновения гриппа составляет от 10 до 20% всех респираторных заболеваний в эпидемический год. Заболеваемость гриппом типа А при этом несколько выше, чем гриппом типа В (Ghendon Y., 1991). Однако заболеваемость гриппом типа А в закрытых коллективах может достигать 60% (Glezen W.P., 1982).

Катастрофическая пандемия 1918-1920 гг. («испанка»), во время которой во всем мире погибло более 20 миллионов заболевших, пандемии 1957 г. («Азиатский грипп») и 1968 г. («Гонконгский грипп») свидетельствуют об опасности внезапно возникающих штаммов вируса гриппа, против которых у населения отсутствует иммунитет (Collins S.D. et al., 1930). Ежегодные зимние эпидемии, вызываемые дрейфующими вариантами гриппа типа А и В, менее драматичны и поэтому их опасность часто недооценивают. Тем не менее они ответственны за повышение заболеваемости и смертности в группах риска (Barker W.H., Mullooly J.P., 1980; Choi K., Thacker S.B., 1981; Blackwelder W.C. et al., 1982; Cameron A.S. et al., 1985; Lui K., Kendal A.P., 1987; Baron R.C. et al., 1988; Glathe H., Rasch G., 1992; McBean A.M. et al., 1993; Sprenger M.C. et al., 1993).

Такие часто возникающие клинические осложнения, как пневмония, вторичные бактериальные инфекции или обострения имеющейся патологии, опасны для лиц пожилого возраста и пациентов с хроническими заболеваниями. В США ежегодные эпидемии являются причиной смерти 20 000-40 000 больных и госпитализаций 150 000 — 200 000, в основном лиц пожилого возраста с хроническими заболеваниями (Choi K., Thacker S.B., 1981; Blackwelder W.C. et al., 1982; Lui K., Kendal A.P., 1987; Baron R.C. et al., 1988). В период эпидемии 1989- 1990 гг. 26 000 человек умерли от осложнений гриппа в Великобритании, 55 000 — в США и 4100 — в Нидерландах (Curwen M. et al., 1990; Sprenger M.I.W. et al., 1990). Частота госпитализации взрослых с сопутствующими заболеваниями высокого риска возрастает во время крупных эпидемий в 2-5 раз, достигая максимальной частоты надфоновых госпитализаций 800 на 100 000 субъектов из групп высокого риска, что обусловит 1600 «дополнительных» госпитализаций на 1 миллион жителей, если взять за точку отсчета, что 20% всего населения входят в группу высокого риска (Barker W.H., Mullooly J.P., 1980; Sprenger M.C. et al., 1993).

Грипп как медицинская проблема

Среди медицинской общественности сегодня уже существует общее понимание проблемы гриппа и его серьезных последствий для здоровья. Болезнь ассоциируется с большой частотой серьезных осложнений и абсолютные показатели смертности порой достигают миллионов, хотя смертность, напрямую связанная с гриппом, порой может быть занижена или не выявлена.

Смертность вследствие гриппа или его осложнений особенно высока у лиц, находящихся в учреждениях закрытого типа, у пациентов с хроническими заболеваниями, туберкулезом и бронхиальной астмой, артериосклерозом, артериальной гипертензией, ревматическими поражениями сердца, цереброваскулярными заболеваниями, генерализированным артериосклерозом, сахарным диабетом, болезнью Паркинсона и множественным рассеянным склерозом. Например, во время эпидемии Азиатского гриппа 1957 года в Нидерландах смертность среди пациентов с эндокринными заболеваниями (в основном с сахарным диабетом) возросла на 25% (Polak M.F., 1959; Ashley J. et al., 1991; Foster D.A. et al., демические штаммы вируса гриппа А возникают при пересортировке генов человеческих и животных штаммов при одновременном инфицировании промежуточного хозяина, возможно, свиньи, которая служит как бы «смешивающим сосудом» (Hinshaw V.S. et al., 1978; Scholtissek C. et al., 1985).

Со времени выделения первого вируса гриппа произошло два крупных антигенных шифта у вируса гриппа А человека, не учитывая повторное возникновение штаммов этого вируса А (H 1 N 1) в 1977 г. В ретроспективных сероэпидемиологических исследованиях выявлены подтипы эпидемических штаммов, которые циркулировали до 1933 г. (Masurel N. et al., 1973). Установлено также, что вирусы гриппа типов B и C не подвергаются антигенным шифтам, возможно, потому, что они не имеют животного резервуара, в отличие от типа вируса гриппа А. Антигенные шифты возникают через нерегулярные промежутки времени — 10-40 лет.

Грипп как социально-экономическая проблема

Социально-экономические последствия гриппа еще труднее оценить, а данные, которыми мы располагаем, чаще всего опубликованы в США и странах Западной Европы. Так, во Франции во время эпидемии гриппа 1989-1990 гг. общее количество дней нетрудоспособности составило 17 млн (Sprenger M.J.W. et al., 1992). В 31% случаев причиной отсутствия с сентября по март сотрудников на рабочих местах было заболевание гриппом (Nicol K.L. et al., 1994) (табл. 4). По опубликованным данным величины охвата групп риска в Европе колеблются от 30 до 78%. В США определена первостепенная задача службы охраны здоровья на 2000 год — достижение 60% охвата пациентов из групп риска. Невысокие показатели охвата объясняются скорее всего такими факторами, как национальная политика в области здравоохранения.

В большинстве стран мира бюджетные средства преимущественно направляются на решение проблем заболеваний сердечно-сосудистой системы, рака, СПИД/ВИЧ и сексуального здоровья, медицины катастроф. В прессе и научной литературе широко освещаются проблемы контролируемых рандомизированных и неконтролируемых исследований, посвященных в основном вопросам клинической эффективности применения вакцин. К сожалению, эти работы не могут быть использованы в качестве доказательства эффективности непосредственно профилактической медицины и тем более для укрепления позиций профилактики в умах чиновников и управленцев всех уровней. Даже специалисты порой не могут доказать эффективность профилактической работы с конкретными вакцинами, прогнозировать оборачиваемость вложений. Вместе с тем, подсчитано, что польза вакцинации и, в частности, у детей, больше, чем все другие медицинские мероприятия, включая использование антибиотиков. В то же время показательным является то, что менее 10% мирового бюджета расходуется на проведение вакцинопрофилактики. Экономическая эффективность предотвращения гриппа является одной из самых выгодных для бюджета стратегий в области превентивной медицины, уступая лишь профилактике гепатита В. Рынок же всех противоинфекционных вакцин примерно равен рынку одного только препарата для лечения язвы желудка. Почему же такая экономически выгодная для национальной службы здравоохранения стратегия не используется? Почему до сих пор при наличии современных высокоэффективных вакцин не удается полностью искоренить определенные инфекционные заболевания? Существует много причин, но основными, по-видимому, следует считать следующие:

  • Охват при вакцинации должен быть адекватным, что необходимо для создания коллективного иммунитета. Например, предполагалось полностью ликвидировать корь к 1991 г. Теперь очевидно, что для достижения этой цели необходима вакцинация 99% населения.
  • Недостоверная или невыверенная информация о побочных эффектах, которой уделяется чересчур много внимания. Чтобы избежать этого требуется образование и обучение как медицинских работников, так и населения.

Дополнительная литература

Вирус - доклеточная форма живой материи.

Характеризуется:

Отсутствием клеточной стенки

Наличием одной нуклеиновой кислоты (РНК либо ДНК)

Часто, осложнение в виде оппортунистических процессов

Реакция крови в виде лейкопении, вторичный иммунодефицит

Нечувствительность к антибактериальной терапии.

ГРИПП (Cемейство - Ortomyxoviridae)

Острая вирусная респираторная инфекция.

Периодически распространяется в виде эпидемий и пандемий. Историческая справка:

первая пандемия «Испанка», в 1818-1820 годах прошлого столетия тип А подтип Н1 N1.

Вторая 1957-1960 годы,»азиатский» выделен в Сингапуре. тип А подтип Н2 N2

Третья 1968-1970г «гонконгский» тип А подтип Н3 N2

Характеризуется явлениями общей интоксикации, лихорадкой, поражением ВДП, нервной и сердечно-сосудистой систем.

Строение вириона вируса гриппа типа А

Он имеет сферическую форму, размер 80-120 нанометров.

Сложный РНК-содержащий вирус, состоящий из центральной части генома (сердцевины) и суперкапсида.

Геном вируса - спираль, однонитчтая, фрагментированная минус-РНК, состоящая из 8 сегментов, которые кодируют 10 вирусных белков. Фрагменты РНК имеют общую белковую оболочку, которая объединяет их, образуя рибонуклеопротеид (RNP).

Вокруг RNP находится слой матриксного белка (М-слой), придающий вириону прочность.

Поверх М-слоя, прилегая к нему, расположен суперкапсид - липопротеиновая оболочка клеточного происхождения со встроенными вирусоспецифическими гликопротеинами гемагглютинином (Н), названным по способности агглютинировать эритроциты, и нейраминидазой (N), фермент, выступающими над поверхностью вириона в виде множества шипиков.

Гемагглютинин обеспечивает способность вируса присоединяться к клетке. Нейраминидаза отвечает, во-первых, за способность вирусной частицы проникать в клетку-хозяина, и, во-вторых, за способность вирусных частиц выходить из клетки после размножения.

Нуклеопротеид (также называемый S-антигеном) постоянен по своей структуре и определяет тип вируса (А, В или С). Поверхностные антигены (гемагглютинин и нейраминидаза V-антигены), напротив, изменчивы и определяют разные штаммы одного типа вируса.

Антигены вируса гриппа

Внутренние антигены (S- антиген) - это антигены белков нуклеокапсида и матриксного белка (NP-белком и М-белком) типоспецифические антигены Отличаются стабильностью, являются типоспецифичными, и не дают перекрестных реакций.

NP- белок связывает Со и определяется РСК

Поверхностные антигены (V-антигены) - являются протективными антигенами - это антигены поверхностных гликопротеинов - гемааглютинина (H-антиген) и нейраминидазы (N-антиген). АНТ к этим АНГ обладают вируснейтрализующим свойством. Исследуют в РТГА (АНГв+Эр+АНТв).

Поверхностные АНГ отличаются многообразием и изменчивостью (15 вариантов H-антигенов, 10 N-антигенов). Для вируса гриппа человека характерны гемагглютинины H1, H2, H3 и нейраминидазы N1 и N2. Различные варианты сочетания H- и N-антигенов определяют подтипы вируса типа А, напр. A/H1N1/, A/H2N2/ и A/H3N2.

Антигенная изменчивость обуславливается 2 процессами:

Дрейф антигенов - незначительные изменения в структуре H-N-антигенов за счет точечных мутаций в генах, которые их кодируют. В результате образуются измененные сероварианты (штаммы) того же подтипа.

Шифт антигенов -полное замещение участка генома, кодирующего синтез H- и N-антигенов, приводящее к образованию нового подтипа вируса гриппа.

Эпидемиология

Грипп:

Антропонозная ОРВИ

Высококонтагеозен

Механизм передачи - аэрогенный

Путь передачи - воздушно-капельный

Интенсивная репродукция вирусов происходит в ВДП, поэтому короткий инкубационный период - от нескольких часов до 2-х дней

Способность к антигенной изменчивости - дрейфу и шифту.

Эпидемическое распространение заболевания - повсеместно.

Пик заболеваемости нарастает в осенне-зимний период

Репродукция вируса гриппа

Адсорбция вирусов на чувствительных клетках

Проникновение вирионов в клетку

Транспортировка вируса к ядру клетки и дальнейшая депротеинизация

Экспрессия вирусного генома и синтез компонентов вириона

Формирование вирионов и их выход из клетки

Цикл репродукции вируса гриппа продолжается 6-8 часов. Зараженная клетка погибает не сразу и может продуцировать несколько тысяч вирионов.

Патогенез

Вирус гриппа избирательно поражает эпителий респираторного тракта (преимущественно трахеи). Размножаясь в клетках цилиндрического эпителия, вызывает их дегенеративные изменения, используя содержимое эпителиальных клеток для построения новых вирусных частиц. Массированный выход зрелых вирусных частиц нередко сопровождается гибелью эпителиальных клеток, а некроз эпителия и связанное с этим разрушение естественного защитного барьера приводит к вирусемии. Токсины вируса гриппа вместе с продуктами распада эпителиальных клеток оказывают токсическое действие на сердечно-сосудистую, нервную (центральную и вегетативную) и другие системы организма. Гриппозная инфекция приводит к подавлению иммунитета, а при внедрении вторичной бактериальной флоры через некротизированную поверхность слизистой оболочки дыхательных путей могут возникнуть различные осложнения.

В патогенезе гриппа выделяют пять основных фаз патологического процесса:

репродукция вируса в клетках дыхательных путей;

вирусемия, токсические и токсико-аллергические реакции;

поражение дыхательных путей с преимущественной локализацией процесса в каком-либо отделе дыхательного тракта;

возможные бактериальные осложнения со стороны дыхательных путей и других систем организма;

обратное развитие патологического процесса.

В основе поражения различных органов и систем при гриппе ведущую роль играют циркуляторные расстройства , причиной которых являются нарушения тонуса, эластичности и проницаемости сосудистой стенки, прежде всего капилляров. Повышение проницаемости сосудистой стенки приводит к нарушению микроциркуляции и возникновению геморрагического синдрома (носовые кровотечения, кровохарканья, а при тяжелом течении - кровоизлияния в вещество и оболочки головного мозга, в альвеолы, что проявляется синдромом инфекционно-токсической энцефалопатии или геморрагическим токсическим отеком легких).

Грипп обусловливает снижение иммунологической реактивности . Это приводит к обострению различных хронических заболеваний, а также к возникновению вторичных бактериальных осложнений. Наиболее частое и серьезное осложнение гриппа - острая пневмония. В настоящее время общепризнано, что пневмония при гриппе носит смешанный вирусно-бактериальный характер вне зависимости от сроков ее возникновения.

Клинические формы гриппа

Неосложненная форма

Легкая степень

Средняя степень тяжести

Тяжелая степень

Осложненная форма

Легкая степень

Средняя степень тяжести

Тяжелая степень

Крайне тяжелая (гипертоксическая) степень

Иммунитет

Постоянно действующие факторы неспецифической защиты (клеточные и гуморальные): выделительная функция организма, сывороточные ингибиторы, альфа-интерферон, секреторные IgA.

Факторы индуцированные вирусом (неспецифические - повышение Т тела, и специфические)

Стойкий постинфекционный клеточный и гуморальный иммунитет, который отличается своей узкой типо-, подтипо-, варианто специфичностью и направлен против сероварианта (штамма) вируса гриппа, вызвавшего определенное заболевание.

Поэтому противогриппозный иммунитет является подтипо- и штаммоспецифичным.

Микробиологическая диагностика базируется:

Выделение и идентификация вируса

Определение вирусных АНГ в клетках больного

Поиск вирусоспецифических АНТ в сыворотке больного.

Материал для исследования: носоглоточное отделяемое, мазки - отпечатки со слизистой носа, постмортальное исследование аутопсий

Лабораторная диагностика гриппа - раннюю и ретроспективную - проводят для подтверждения клинического диагноза, дифференциации гриппа от ОРВИ другой этиологии и для эпидемиологических целей.

Ранняя диагностика : в первые 3 дня и не позднее 5-го дня болезни обнаруживают АНГ вирусов гриппа с помощью экспресс методов Исследуемый материал : слизь из носовых ходов и носоглотки, взятая тампонами, путем смывов, методом мазков-отпечатков со слизистой нижних носовых раковин, а также секционный материал после их специальной обработки.

Экспресс-диагностика : 2-5 часов, чаще РИФ (прямой и непрямой). Специфические АНГ вируса гриппа и внутриклеточные включения выявляют по их яркому изумрудно-зеленому свечению в участках цитоплазмы и ядра инфицированных эпителиальных клеток.

Вирусологический метод

Выделение вируса на куриных эмбрионах:

Проводят комбинированное заражение исследуемым материалом 10-11 дневных эмбрионов в амниотическую и аллантоисную полости. После 3 дней инкубации при t 35С проверяют присутствие вирусов в амниотической и аллантоисной жидкости с помощью РГА с эритроцитами кур, морской свинки или человека, устанавливают титр вируса.

Далее проводится серологическая идентификация выделенного вируса с помощью РСК для определения типовой принадлежности вируса (А, В или С) и РТГА для установления подтипа или штамма вируса гриппа. Реакции ставят с соответствующими диагностическими сыворотками.

Выделение вирусов в культурах клеток

Осуществляется путем заражения нескольких типов культур клеток, чаще используются первичные культуры почек человека и некоторых животных. Клеточные культуры инкубируют в течение недели при Т-33С, ежедневно регистрируя изменения монослоя клеток с целью выявления ЦПД (РТГА, РГА, ИФ-метод). Далее вируссодержащей культуральной жидкостью заражают куриные эмбрионы, получают алантоисную жидкость с высоким содержанием вирусов, и проводят идентификацию выделенного вируса.

Ретроспективная диагностика гриппа (серологическое исследование)

Серологическое исследование парных сывороток, взятых в начале заболевания и через 7-14 дней. Повышение титра специфических АНТ в течение заболевание не менее, чем в 4 раза (у детей младшего возраста - в 2 раза) позволяют установить точную этиологию гриппа.

Специфическая профилактика

Вакцинопрофилактика:

Цельновирусные вакцины (1-го поколения) - инактивированные и живые.

Расщепленные - сплит вакцины (2-го поколения), содержат внутренние и наружные АНГ вирусов гриппа и не содержат липидов, удаленных после обработки вирионов растворителями или детергентами.

Субъединичные вакцины (3-го поколения) являются наиболее очищенными, содержат наружные H- и N-антигены вирусов гриппа

Экстренная профилактика:

Ее проводят во время эпидемического подъема заболеваемости. Различают плановую профилактику, организуемую в детских учреждениях, рабочих коллективах и очаговую в семьях гриппозных больных. Для экстренной профилактики применяют противовирусные препараты, иногда проводят иммуноглобулинпрофилактику.

Лечение гриппа

Для лечения гриппа применяют противовирусные препараты:

Препарата интерферона (вирус гриппа А + антитоксическое действие при гриппе В)

Ремантадин (вирус гриппа А +В) ингибирует синтез М-белка, что приводит к нарушению цикла репродукции и препятствует формированию полноценных вирионов.

Арбидол и амиксин , являются индукторами интерферонов и иммуномодуляторами, которые воздействуют на все типы вирусоа гриппа

При тяжелых формах гриппа в первые 3 дня болезни показано введение противогриппозного иммуноглобулина .

Симптоматическое лечение. При наличии бактериальных осложнений назначают антибиотики и сульфаниламиды.

Поделиться