Mcs 51 обобщенная структурная схема. Микроконтроллеры MCS–51

Основой микроконтроллера (см. рис. 1) является 8–ми битовое Арифметическо–Логическое устройство (АЛУ). Память МК имеет Гарвардскую архитектуру, т.е. логически разделена: на память программ – ПП (внутреннюю или внешнюю), адресуемую 16–ти битовым счетчиком команд (СК) и память данных – внутреннюю (Резидентная память данных – РПД) 128 (или 256) байт, а также внешнюю (Внешняя память данных – ВПД) до 64 Кбайт. Физически память программ реализована на ПЗУ (доступна только по чтению), а память данных – на ОЗУ (возможна запись и чтение данных).

Прием и выдача внешних сигналов осуществляется через 4 восьмибитовых порта Р0..Р3. При обращении к внешней памяти программ (ВПП) или памяти данных (ВПД) порты Р0 и Р2 используются как мультиплексированная внешняя шина Адрес/Данные. Линии порта Р3 могут выполнять также альтернативные функции (см. табл. 1).

16–ти битовый регистр DPTR формирует адрес ВПД или базовый адрес Памяти программ в команде преобразования Аккумулятора. Регистр DPTR может также использоваться как два независимых 8–ми битовых регистра (DPL и DPH) для хранения операндов.

8–ми битовый внутренний регистр команд (РК) принимает код выполняемой команды; этот код дешифрируется схемой управления, которая генерирует управляющие сигналы (см. рис. 1).

Обращение к регистрам специальных функций – РСФ (SFR – на рис. 1 они обведены пунктирной линией) возможно только с использованием прямой байтовой адресации в диапазоне адресов от 128 (80h) и более.


Резидентная память данных (РПД) в первых моделях микроконтроллеров семейства MCS–51 имела объем 128 байт. Младшие 32 байта РПД являются одновременно и регистрами общего назначения – РОН (4 банка по 8 РОНов). Программа может обратиться к одному из 8–ми РОНов активного банка. Выбор активного банка РОНов осуществляется программированием двух бит в регистре состояния процессора – PSW.


Таблица 1 – Назначение выводов MCS–51

№ выв. Обозначение Назначение
1..8 Р1 8–ми битовый квазидвунаправленный порт ввода/вывода
9 RST

Сигнал сброса (активный уровень – высокий);

Сигнал RST обнуляет: PC и большинство Регистров Специальных Функций (SFR), запрещая все прерывания и работу таймеров; выбирает Банк РОНов 0; записывает в порты Р0_Р3 "все единицы", подготавливая их на ввод; записывает код 07H в указатель стека (SP);

10..17

8–ми битовый квазидвунаправленный порт ввода/вывода; после записи в соответствующий разряд "1" – выполняет дополнительные (альтернативные) функции:

Вход последовательного порта – RxD;

Выход последовательного порта – TxD;

Вход внешнего прерывания 0 – ~INT0;

Вход внешнего прерывания 1 – ~INT1;

Вход таймера/счетчика 0 – Т0;

Вход таймера/счетчика 1 – Т1;

Выход строб. сигнала при записи в ВПД – ~ WR;

Выход строб. сигнала при чтении из ВПД – ~ RD;

18, 19 X1, X2 Выводы для подключения кварцевого резонатора или LC–контура;
20 GND Общий вывод;
21..28 P2 8–ми битовый квазидвунаправленный порт ввода /вывода; или выход адреса A в режиме работы с внешней памятью (ВПП или ВПД);
29 PME Строб чтения Внешней Памяти Программ, выда–ется только при обращении к внешнему ПЗУ;
30 ALE Строб адреса Внешней памяти (ВПП или ВПД);
31 ЕА Отключение РПП, уровень "0" на этом входе пе–реводит МК на выборку команд только из ВПП ;
39..32 Р0 8–ми битовый двунаправленный порт ввода/ вывода; при обращении к Внешней Памяти выдает адреса A (которые записываются во внешний регистр по сигналу ALE), а затем обменивается байтом синхронно с сигналом ~PME (для команд) или ~WR,~RD (для данных в ВПД), при обращении к Внешней Памяти в регистр порта Р0 записываются все единицы, разрушая хранимую там информацию;
40 Ucc Вывод напряжения питания

Переключение банков РОНов упрощает выполнение подпрограмм и обработку прерываний, т.к. не нужно пересылать в стек содержимое РОНов основной программы при вызове подпрограммы (достаточно в подпрограмме перейти в другой активный банк РОНов).

Обращение к РПД возможно с использованием косвенной или прямой байтовой адресации (прямая байтовая адресация позволяет обратиться только к первым 128-ми байтам РПД).

Расширенная область РПД (у микроконтроллеров семейства MCS-52 и последующих семейств) с адреса 128 (80h) до 255 (FFh) может адресоваться только с использованием косвенного метода адресации.

Таблица 2 – Блок Регистров Специальных Функций (s f r)

Мнемо–код Наименование
0E0h * ACC Аккумулятор
0F0h * B Регистр расширитель аккумулятора
0D0h * PSW Слово состояния процессора
0B0h * P3 Порт 3
0A0h * P2 Порт 2
90h * P1 Порт 1
80h * P0 Порт 0
0B8h * IP Регистр приоритетов прерываний
0A8h * IE Регистр маски прерываний
99h SBUF Буфер последовательного приемо–передатчика
98h * SCON Регистр управления/статуса последовательного порта
89h TMOD Регистр режимов таймеров/счетчиков
88h * TCON Регистр управления/статуса таймеров/счетчиков
8Dh TH1 Таймер 1 (старший байт)
8Bh TL1 Таймер 1 (младший байт)
8Ch TH0 Таймер 0 (старший байт)
8Ah TL0 Таймер 0 (младший байт)
83h DPH Регистр–указатель данных (DPTR) (старший байт)
82h DPL Регистр–указатель данных (DPTR) (младший байт)
81h SP Регистр–указатель стека
87h PCON Регистр управления мощностью потребления

2. ПРОГРАММНАЯ МОДЕЛЬ MCS–51


ТИПЫ КОМАНД MCS–51

Почти половина команд выполняется за 1 машинный цикл (МЦ). При частоте кварцевого генератора 12 МГц время выполнения такой команды – 1 мкс. Остальные команды выполняются за 2 машинных цикла, т.е. за 2мкс. Только команды умножения (MUL) и деления (DIV) выполняются за 4 машинных цикла.

За время одного машинного цикла происходит два обращения к Памяти Программ (внутренней или внешней) для считывания двух байтов команды или одно обращение к Внешней Памяти Данных (ВПД).

3. МЕТОДЫ (СПОСОБЫ) АДРЕСАЦИИ MCS–51

1. РЕГИСТРОВАЯ АДРЕСАЦИЯ – 8–ми битовый операнд находится в РОНе выбранного (активного) банка регистров;

2 НЕПОСРЕДСТВЕННАЯ АДРЕСАЦИЯ (обозначается знаком – #) – операнд находится во втором (а для 16–ти битового операнда и в третьем) байте команды;

3 КОСВЕННАЯ АДРЕСАЦИЯ (обозначается знаком – @) – операнд находится в Памяти Данных (РПД или ВПД), а адрес ячейки памяти содержится в одном из РОНов косвенной адресации (R0 или R1); в командах PUSH и POP адрес содержится в указателе стека SP; регистр DPTR может содержать адрес ВПД объемом до 64К;

4 ПРЯМАЯ БАЙТОВАЯ АДРЕСАЦИЯ – (dir) – используется для обращения к ячейкам РПД (адреса 00h…7Fh) и к регистрам специальных функций SFR (адреса 80h…0FFh);

5 ПРЯМАЯ БИТОВАЯ АДРЕСАЦИЯ – (bit) – используется для обращения к отдельно адресуемым 128 битам, расположенным в ячейках РПД по адресам 20H…2FH и к отдельно адресуемым битам регистров специальных функций (см. табл. 3 и программную модель);

6 КОСВЕННАЯ ИНДЕКСНАЯ АДРЕСАЦИЯ (обозначается знаком – @)– упрощает просмотр таблиц в Памяти Программ, адрес ПП определяется по сумме базового регистра (PC или DPTR) и индексного регистра (Аккумулятора);

7 НЕЯВНАЯ (ВСТРОЕННАЯ) АДРЕСАЦИЯ – в коде команды содержится неявное (по умолчанию) указание на один из операндов (чаще всего на Аккумулятор).

4. ФОРМАТ СЛОВА СОСТОЯНИЯ ПРОЦЕССОРА (PSW)

C – флаг переноса (CARY) или заема, выполняет также функции "булевого Аккумулятора" в командах, оперирующих с битами;

AC – флаг вспомогательного (дополнительного) переноса – устанавливается в "1", если в команде сложения (ADD, ADDC) был перенос из младшей тетрады в старшую (т.е. из 3-го бита в 4-й бит);

F0 – флаг пользователя – устанавливается, сбрасывается и проверяется программно;

RS1 RS0 Банк Адрес (dir)
0 0 0 00h..07h
0 1 1 08h..0Fh
1 0 2 10h..17h
1 1 3 18h..1Fh

RS1,RS0 – Выбор банка регистров:

OV – Флаг арифметического переполнения; его значение определяется операцией "Исключающее ИЛИ" сигналов входного и выходного переносов старшего разряда АЛУ; единичное значение этого флага указывает на то, что результат арифметической операции в дополнительном коде вышел за допустимые пределы: –128…+127; при выполнении операции деления флаг OV сбрасывается, а в случае деления на ноль – устанавливается; при умножении флаг OV устанавливается, если результат больше 255 (0FFH);

Разряд PSW – Резервный, содержит триггер, доступный по записи или чтению;

P – флаг паритета – является дополнением количества единичных битов в аккумуляторе до четного; формируется комбинационной схемой (программно доcтупен только по чтению).

В микроконтроллерах MCS-51 отсутствует флаг "Z". Но в командах условного перехода (JZ, JNZ) проверяется комбинационной схемой текущее (нулевое или ненулевое) содержимое Аккумулятора.

Все команды пересылок и обмена операндов могут осуществляться через Аккумулятор (см. рис. 3). Причем пересылки из/в Внешней Памяти (Памяти Программ или Памяти Данных) могут осуществляться только через Аккумулятор.

Большинство пересылок могут осуществляться также через прямоадресуемый байт (dir). Существуют даже пересылки dir – dir (см. рис. 3).

Отсутствующие пересылки из РОНа в РОН могут быть реализованы как пересылки из РОНа в прямоадресуемый байт dir (с учетом того, что РОНы расположены в начальной области Резидентной Памяти Данных, ячейки которой могут адресоваться как dir).

Команды обмена XCH позволяют пересылать байты без разрушения обоих операндов.

Арифметические команды выполняются только в Аккумуляторе. Поэтому первый операнд необходимо предварительно поместить в Аккумулятор и потом сложить или вычесть второй операнд. Результат помещается в Аккумулятор.


Команда вычитание SUBB выполняется только с заемом (т.е. из результата вычитается и флаг Сary). Поэтому для выполнения команды вычитания без заема необходимо предварительно выполнить команду очистки флага С (CLRC).

Команда умножения однобайтовых операндов – MULAB – размещает двухбайтовый (16 бит) результат: младший байт – в Аккумулятор, старший байт – в регистр В.

Результат выполнения команды деления однобайтовых операндов – DIVAB – помещается: частное – а Аккумулятор, остаток – в регистр В.

Арифметическая команда INC добавляет к выбранному операнду единицу. Арифметическая команда DEC вычитает из выбранного операнда единицу. Команда десятичной коррекции Аккумулятора (DAA) помогает складывать двоично-десятичные числа (BCD-числа) без перевода их в шестнадцатеричный формат (hex-формат). Исходные операнды должны быть обязательно в BCD-формате, т.е. в каждой тетраде одного байта находятся только числа от 0 до 9 (там не могут быть шестнадцатеричные числа: A, B, C, D, E, F). Поэтому в одном байте могут находиться числа от 00 до 99 для упакованных BCD-чисел или числа от 0 до 9 для неупакованных BCD-чисел.

Команда DA A – десятичной коррекции выполняет действия над содержимым Аккумулятора после сложения BCD-чисел в процессоре (числа складывались по законам шестнадцатеричной арифметики) следующим образом (см. пример):

· если содержимое младшей тетрады Аккумулятора больше 9 или установлен флаг вспомогательного переноса (AС = 1), то к содержимому Аккумулятора добавляется 6 (т.е. недостающие шесть цифр в hex-формате);

· если после этого содержимое старшей тетрады Аккумулятора больше 9 или установлен флаг C, то число 6 добавляется к старшей тетраде Аккумулятора.

Команду десятичной коррекции DA A не применяют после команды инкремента (INC), потому что команда инкремента не влияет (не изменяет) на флаги С и АС.

Логические команды:

Логическое "И" – ANL,

Логическое "ИЛИ" – ORL,

Логическая команда "ИСКЛЮЧАЮЩЕЕ ИЛИ" – XRL– выполняются в Аккумуляторе (как и арифметические), но имеется возможность выполнить логические команды также и в прямоадресуемом байте (dir). При этом второй операнд может быть:

В Аккумуляторе или

Непосредственный операнд в команде.

Команды вращения (RR A, RL A) и команды вращения через флаг CARY (RRC A, RLC A) циклически сдвигают содержимое Аккумулятора на 1 бит.ресылки битовых операндов осуществляются только через флаг С.

У истоков производства микроконтроллеров стоит фирма Intel с семействами восьмиразрядных микроконтроллеров 8048 и 8051. Архитектура MCS-51 получила свое название от первого представителя этого семейства - микроконтроллера 8051, выпущенного в 1980 году на базе технологии HMOS. Удачный набор периферийных устройств, возможность гибкого выбора внешней или внутренней программной памяти и приемлемая цена обеспечили этому микроконтроллеру успех на рынке. С точки зрения технологии микроконтроллер 8051 являлся для своего времени очень сложным изделием - в кристалле было использовано 128 тыс. транзисторов, что в 4 раза превышало количество транзисторов в 16-разрядном микропроцессоре 8086.

Основными элементами базовой архитектуры являются:
- 8-разрядное АЛУ на основе аккумуляторной архитектуры;
- 4 банка регистров, по 8 в каждом;
- встроенная память программ 4Кбайт;
- внутреннее ОЗУ 128 байт;
- булевый процессор
-2 шестнадцатиразрядных таймера;
- контроллер последовательного канала (UART);
- контроллер обработки прерываний с двумя уровнями приоритетов;
- четыре 8-разрядных порта ввода/вывода, два из которых используются в качестве шины адреса/данных для доступа к внешней памяти программ и данных;
- встроенный тактовый генератор.

Именно этот микроконтроллер наиболее хорошо известен разработчикам и является популярным средством управления в устройствах самого широкого круга. Имеется множество эмуляторов, отладчиков и программаторов микросхем 8051, поэтому с разработкой программного обеспечения нет никаких трудностей.

Следующим принципиальным шагом в развитии MCS-51 стал перевод технологии изготовления на CHMOS. Это позволило реализовать режимы Idle и Power Down, позволившие резко снизить энергопотребление кристалла и открывшие дорогу к применению микроконтроллера в энергозависимых приложениях, например, в автономных приборах с батарейным питанием.

И последним принципиальным этапом развития этого направления фирмой Intel в рамках 8-битной архитектуры стал выпуск микроконтроллеров 8xC51FA/FB/FC, которые для краткости часто обозначаются как 8xC51FX. Главной отличительной особенностью этой группы кристаллов является наличие у них массива программируемых счетчиков (PCA). Структурная схема PCA представлена на рис.2.

В состав PCA входят:

Таймер-счетчик обслуживает все пять модулей выборки и сравнения, которые могут быть запрограммированы на выполнение одной из следующих функций:

16-битная выборка значения таймера по положительному фронту внешнего сигнала;
16-битная выборка значения таймера по отрицательному фронту внешнего сигнала;
16-битная выборка значения таймера по любому фронту внешнего сигнала;
16-битный программный таймер;
16-битное устройство скоростного вывода (HSO);
8-битный ШИМ

Выполнение всех перечисленных функций происходит в PCA на аппаратном уровне и не загружает центральный процессор, что позволяет повысить общую пропускную способность системы, повысить точность измерений и отработки сигналов и снизить время реакции микроконтроллера на внешние события, что особенно важно для систем реального времени. Реализованный в 8xC51FX PCA оказался настолько удачным, что архитектура микроконтроллеров FX стала промышленным стандартом де-факто, а сам PCA многократно воспроизводился в различных модификациях микроконтроллеров разных фирм.

Изначально наиболее "узкими" местами архитектуры MCS-51 были 8-разрядное АЛУ на базе аккумулятора и относительно медленное выполнение инструкций (для выполнения самых быстрых инструкций требуется 12 периодов тактовой частоты). Это ограничивало применение микроконтроллеров семейства в приложениях, требующих повышенного быстродействия и сложных вычислений (16- и 32- битовых). Насущным стал вопрос принципиальной модернизации старой архитектуры. Проблема модернизации осложнялась тем, что к началу 90-х годов уже была создана масса наработок в области программного и аппаратного обеспечения, и одной из основных задач разработки новой архитектуры была реализация аппаратной и программной совместимости со старыми разработками на базе MCS-51. Для решения этой задачи была создана совместная группа из специалистов компаний Intel и Philips. В результате в 1995 г. появилось 2 существенно отличающихся семейства: MCS-251/151 у Intel и 51XA у Philips (на последнем мы остановимся ниже).

Основные характеристики архитектуры MSC-251:

24-разрядное линейное адресное пространство, обеспечивающее адресацию до 16M памяти (выпускаемые микроконтроллеры семейства MCS-251 имеют адресное пространство памяти объемом 256К);
Система команд микроконтроллеров семейства MCS-251 содержит все 111 команд, входящих в систему команд микроконтроллеров семейства MCS-51 ("старые" команды), и, кроме того, в нее входят 157 "новых" команд. Коды некоторых новых команд имеют формат 4 байт.
Перед использованием микроконтроллера его необходимо сконфигурировать, т.е. с помощью программатора "прожечь" конфигурационные байты, определяющие, какой из наборов инструкций станет активным после включения питания. Если установить набор инструкций MCS-51, то в этом случае MSC-251 будет совместим с MCS-51 на уровне двоичного кода. Такой режим называется Binary Mode. Однако расширенные инструкции в этом режиме также доступны через "форточку" - зарезервированный код инструкции 0A5h. Естественно, длина каждой расширенной инструкции увеличивается в таком случае на 1 байт. Если же изначально установить набор расширенных инструкций, то в этом случае программы, написанные для MCS-51 потребуют перекомпиляции на кросс-средствах для MCS-51, т.к. теперь уже стандартные инструкции будут доступны через ту же "форточку" 0A5h и длина их также увеличится на 1 байт. Такой режим называется Source Mode. Он позволяет с максимальной эффективностью использовать расширенные инструкции и достигнуть наибольшего быстродействия, но требует переработки программного обеспечения.
регистровая архитектура, допускающая обращение к регистрам как к байтам, словам и двойным словам;
страничный режим адресации для ускорения выборки инструкций из внешней программной памяти;
очередь инструкций;
расширенный набор команд, включающий 16-битовые арифметические и логические инструкции;
расширенное адресное пространство стека до 64К;
выполнение самой быстрой инструкции за 2 такта;
совместимость на уровне двоичного кода с программами для MCS-51.

Для пользователей, ориентированных на применение микроконтроллеров MCS-251 в качестве механической замены MCS-51 фирма Intel выпускает микроконтроллеры MCS-251 с уже запрограммированными битами конфигурации в состоянии Binary Mode. Такие микроконтроллеры получили индекс MCS-151.

Помимо самой Intel микроконтроллеры MCS-251 по ее лицензии выпускает компания Temic Semiconductors.

Универсальная последовательная шина (Universal Serial Bus или USB), распространяет технологию Plug-and-Play на внешние устройства ввода/вывода, применяемые на современных высокопроизводительных персональных компьютерах.

Для того, чтобы обеспечить возможность подключения разнообразных периферийных устройств, в стандарте USB определены четыре режима передачи: Управляющий, Изохронный, Импульсный и передача массивов. Каждое периферийное устройство должно поддерживать управляющий режим для передачи параметров конфигурации, команд и информации о состоянии устройства. Изохронная передача обеспечивает гарантированный доступ к шине, постоянную пропускную способность и устойчивость к ошибкам, этот режим передачи может применяться в устройствах аудиовывода и компьютерной телефонии. Импульсная передача предназначена для устройств ввода типа мыши, джойстика или клавиатуры, передающих информацию редко и небольшими порциями, но с ограниченным периодом обслуживания. Передача массивов позволяет устройствам типа сканеров, факсов или цифровых камер передавать большие массивы данных в персональный компьютер, как только освобождается канал шины.

Основные характеристики продукта

Полная совместимость со "Спецификацией Universal Serial Bus 1.0"
Встроенный USB transceiver Serial Bus Interface Engine (SIE)
Четыре очереди FIFO для передачи
Три 16-байтных очереди FIFO
Четыре очереди FIFO для приема
Три 16-байтных очереди FIFO
Одна настраиваемая очередь FIFO (до 1024 байт)
Автоматическое управление приемом/передачей в очередях FIFO
Операции остановки/возобновления
Три вектора прерывания шины USB
Цикл блокировки фазы
Скорости передачи данных: 12 Мбит/сек и 1,5 Мбит/сек
Режим с замедленным циклом
Внешнее адресное пространство емкостью 256 Кбайт
Энергосберегающие режимы: ожидание и отключение питания
Задаваемые пользователем параметры
Ожидание в реальном времени
1 Кбайт оперативной памяти на кристалле
Четыре порта ввода/вывода
Программируемый массив счетчиков (PCA)
Стандартный (MCS 51) микроконтроллер UART
Аппаратный сторожевой таймер
Три 16-разрядных таймера/счетчика с гибкими возможностями
Совместимость с набором команд микроконтроллеров архитектуры MCS 51 и MCS 251
Архитектура микроконтроллера MCS 251, основанная на регистрах
Рабочая частота 6 или 12 МГц

Контроллер 8x930Hx имеет дополнительные характеристики:

Концентратор USB
Возможности управления концентратором USB
Управление соединением
Обнаружение соединения/разрыва связи с устройством вывода
Управление питанием, включая остановку/возобновление
Обнаружение и восстановление сбоев шины
Поддержка полноскоростных и низкоскоростных устройств вывода
Выходной контакт для переключения питания порта
Входной контакт для обнаружения перегрузки

Четыре различных режима передачи данных USB обеспечиваются совместной работой трех элементов: Хост, Концентратор, Функциональное устройство. Хост контролирует передачу по шине содержательной и управляющей информации. Функциональные устройства расширяют хост-системы. Сюда включаются типичные виды работы с PC: ввод с клавиатуры или джойстика, вывод на монитор; а также более сложные виды деятельности, такие как цифровая телефония и передача изображений. Для управления функциональными устройствами спроектирован микроконтроллер Intel 8x930Ax. Наконец, концентраторы представляют собой точку расширения USB, с помощью которой обеспечивается доступ к другим функциональным устройствам. Микроконтроллер Intel 8x930Hx, в котором совмещены функции управления функциональным устройством и концентратором USB, является первым серийным концентратором USB, предназначенным для современных периферийных устройств PC.

Концентраторы USB играют существенную роль в расширении мира пользовател PC. С появлением периферийных устройств - клавиатур, мониторов, принтеров и других - снабженных встроенными концентраторами, подключить или отключить новое устройство так же просто, как вставить вилку в розетку. Новый уровень производительности и расширенные способы соединения USB могут привести к появлению устройств для рабочих и развлекательных приложений нового поколения. Дни встраиваемых карт, конфликтов IRQ и спутанных клубков проводов сочтены.

Кабель шины USB состоит всего из четырех проводов: Vbus, D+, D- и GND - чем достигается упрощение и единообразие соединения. Этой же цели служит единый стандартный коннектор для подключения периферийных устройств к шине USB. Данные по-разному передаются по кабелям D+ и D-: либо на полной скорости 12 Мбит/сек, либо на низкой скорости 1,5 Мбит/сек. Приемопередатчик встроен в кристалл, поэтому необходимость во внешних электронных цепях отсутствует. Исключение составляет терминальный нагрузочный резистор на обоих линиях D+ и D-, который необходим для определения типа устройства: высокоскоростное или низкоскоростное.

Обзор семейства
Семейство Intel 8x930 состоит из двух однокристальных контроллеров.

Контроллер Intel 8x930Ax представляет собой 8-разрядное устройство, которое основано на архитектуре микроконтоллера MCS 251 и предназначено для работы с периферийными устройствами, подключаемыми к шине USB. С другой стороны, в 8x930Hx использовано то же ядро микроконтроллера MCS 251 плюс расширенные возможности встроенного концентратора шины USB. Применение архитектуры MCS 251 в обоих контроллерах шины USB дает следующие преимущества:

Высокая производительность
Применение смешанных типов памяти и адресации
Низкое энергопотребление
Низкий уровень шума
Эффективная поддержка языков высокого уровня
Расширенный набор команд
Встроенные возможности

В качестве команд для 8x930Ax можно использовать инструкции как из набора для микроконтроллера MCS 51, так и из набора для микроконтроллера MCS 251. Такой подход сохраняет инвестиции пользователей в программное обеспечение и выжимает максимум производительности из приложений.

Микроконтроллеры 8x930 настолько насыщены различными встроенными средствами, что они выглядят мощнее, нежели просто микроконтроллеры. Массив программируемых счетчиков (PCA) придает гибкость приложениям, которым требуется сравнение или захват данных в реальном времени, высокоскоростной обмен данными или широтно-импульсная модуляция. Кроме того, в состав контроллера вошли расширенный последовательный порт, три 16-разрядных таймера/счетчика, аппаратный сторожевой таймер, четыре 8-разрядных порта ввода/вывода, а также предусмотрены два энергосберегающих режима: ожидание и отключение питания.

Контроллеры семейства 8x930Ax оснащены 1 Кбайт памяти и могут быть использованы в вариантах без постоянной памяти, либо с постоянной памятью емкостью 8 или 16 Кбайт. Они могут адресовать до 256 Кбайт внешней памяти для размещения команд и данных и 40 байт регистров общего назначения, которые располагаются в центральном процессоре как регистровый файл. В зависимости от используемой комбинации в регистровом файле могут располагаться 16 байтовых регистров, 16 двухбайтовых регистров и 10 четырехбайтовых регистров.

В контроллерах предусмотрен гибкий интерфейс с внешней памятью. Дл обращения к устройствам с медленной памятью имеется возможность добавлени трех циклов ожидания, а для генерации большего количества циклов - обращение к функции реального времени. Выборка внешних команд может повысить производительность за счет использования страничного режима, при котором данные перебрасываютс в старшем байте адреса.

Оба контроллера 8x930 оснащены восемью очередями FIFO для поддержки внутренних устройств вывода: четыре очереди для передачи и четыре очереди для приема. Четыре очереди FIFO для приема/передачи поддерживают четыре оконечных функциональных устройства (от 0 до 3). Очередь 0 состоит из 16 байт и предназначена для передачи управляющей информации. Очередь 1 относитс к категории настраиваемых пользователем и имеет емкость до 1024 байт. Очереди 2 и 3 состоят из 16 байт каждая и могут использоваться для передачи информации в импульсном, изохронном и режиме передачи массивов. В случае использования контроллера 8x930Hx указанные очереди усиливаются парой очередей FIFO для входных устройств. Эти очереди в контроллере 8x930Hx поддерживаются дополнительным повторителем, который отвечает за повторную передачу потоков данных, генерируемых выходными устройствами.

Обзор архитектуры
Конструкционно реализацию USB в микроконтроллерах 8x930Ax и 8x930Hx можно разделить на четыре блока: очереди FIFO, блок интерфейса с функциональными устройствами, блок интерфейса с последовательной шиной и приемо-передатчик. Контроллер 8x930Hx имеет длополнительные блоки для управления функциями концентратора: блок интерфейса с концентратором и повторитель.

Очереди FIFO для приема и передачи на обоих контроллерах являются кольцевыми. Очереди поддерживают до двух раздельных наборов данных переменного размера и содержат регистры счетчика байтов, показывающие количество байтов в наборах данных. Очереди снабжены флажками, показывающими заполненность или пустоту очереди, а также способны повторять прием или передачу текущего набора данных. Блок интерфейса с функциональными устройствами (ИФУ) распределяет переданные или принятые данные USB в соответствии с типом передачи и состоянием очередей. Кроме того, блок ИФУ следит за состоянием транзакции, управляет очередями FIFO, при помощи запроса на прерывание сообщает о наступлении управляющих событий центральному процессору 8x930.

Блок интерфейса с последовательной шиной реализует протокол передачи USB: последовательно упорядочивает пакеты, осуществляет генерацию и распознавание сигнала, генерацию и проверку контрольных сумм, кодирование/декодирование данных по методу NRZI, побитовое заполнение, генерацию и распознавание идентификатора пакета (PID).

Интегрированный приемо-передатчик на микроконтроллерах USB согласован с простым четырех-жильным интерфейсом, определенным спецификаицей USB 1.0. Семейство контроллеров 8x930 имеет три прерывания, связанных с USB. Они происходят при каждом старте кадра, окончании приема/передачи данных на оконечные функциональные устройства, в случае глобальной приостановки или возобновления работы. В концентраторе 8x930Hx блок интерфейса с концентратором служит для управления и слежения за состоянием соединени с выходными портами. Повторитель отвечает за распространение сигналов повышающих и понижающих портов USB.

Архитектура семейства MCS-51 в значительной мере предопределяется ее назначением - построение компактных и дешевых цифровых устройств. Все функции микроЭВМ реализуются с помощью единственной микросхемы. В состав семейства MCS-51 входит целый ряд микросхем от самых простых микроконтроллеров до достаточно сложных. Микроконтроллеры семейства MCS-51 позволяют выполнять как задачи управления различными устройствами, так и реализовывать отдельные узлы аналоговой схемы. Все микросхемы этого семейства работают с одной и той же системой команд , большинство из них выполняется в одинаковых корпусах с совпадающей цоколевкой (нумерация ножек для корпуса). Это позволяет использовать для разработанного устройства микросхемы разных фирм — производителей (таких как Intel, Dallas, Atmel, Philips и т.д.) без переделки принципиальной схемы устройства и программы .

Рисунок 1. Структурная схема контроллера К1830ВЕ751

Структурная схема контроллера представлена на рисунке 1. и состоит из следующих основных функциональных узлов: блока управления, арифметико-логического устройства, блока таймеров/счетчиков, блока последовательного интерфейса и прерываний, программного счетчика, памяти данных и памяти программ. Двусторонний обмен осуществляется с помощью внутренней 8-разрядной магистрали данных. Рассмотрим подробнее назначение каждого блока. По такой схеме построены практически все представители семейства MCS-51 . Различные микросхемы этого семейства различаются только регистрами специального назначения (в том числе и количеством портов). Система команд всех контроллеров семейства MCS-51 содержит 111 базовых команд с форматом 1, 2 или 3 байта и не изменяется при переходе от одной микросхемы к другой. Это обеспечивает прекрасную переносимость программ с одной микросхемы на другую.

Блок управления и синхронизации

Блок управления и синхронизации (Timing and Control) предназначен для выработки синхронизирующих и управляющих сигналов, обеспечивающих координацию совместной работы блоков ОЭВМ во всех допустимых режимах ее работы.В состав блока управления входят:

  • устройство формирования временных интервалов,
  • логика ввода-вывода,
  • регистр команд,
  • регистр управления потреблением электроэнергии,
  • дешифратор команд, логика управления ЭВМ.

Устройство формирования временных интервалов предназначено для формирования и выдачи внутренних синхросигналов фаз, тактов и циклов. Количество машинных циклов определяет продолжительность выполнения команд. Практически все команды ОЭВМ выполняются за один или два машинных цикла, кроме команд умножения и деления, продолжительность выполнения которых составляет четыре машинных цикла. Обозначим частоту задающего генератора через F г. Тогда длительность машинного цикла равна 12/F г или составляет 12 периодов сигнала задающего генератора. Логика ввода - вывода предназначена для приема и выдачи сигналов, обеспечивающих обмен информации с внешними устройствами через порты ввода вывода Р0-Р3.

Регистр команд предназначен для записи и хранения 8-ми разрядного кода операции выполняемой команды. Код операции, с помощью команд и логики управления ЭВМ, преобразуется в микропрограмму выполнения команды.

Регистр управления потреблением (PCON ) позволяет останавливать работу микроконтроллера для уменьшения потребления электроэнергии и уменьшения уровня помех от микроконтроллера. Еще большего уменьшения потребления электроэнергии и уменьшения помех можно добиться, остановив задающий генератор микроконтроллера. Этого можно достичь при помощи переключения бит регистра управления потреблением PCON. Для варианта изготовления по технологии n-МОП (серия 1816 или иностранных микросхем, в названии которых в середине отсутствует буква "c") регистр управления потреблением PCON содержит только один бит, управляющий скоростью передачи последовательного порта SMOD, а биты управления потреблением электроэнергией отсутствуют.

Вместе со статьей "Архитектура микроконтроллеров MCS-51" читают:


http://сайт/MCS51/tablms.php


http://сайт/MCS51/SysInstr.php


http://сайт/MCS51/port.php

Архитектура микроконтроллеров

Понимание архитектуры микроконтроллеров является ключевым при изучении языков программирования типа ассемблер. Структура ассемблера, формат его команд, адресация операндов и т. д. полностью определяются архитектурой. Целью изучения архитектуры является:

· выявление набора доступных для программирования регистров, их функционального назначения и структуры;

· понимание организации оперативной памяти и порядка ее использования;

· знакомство с типами данных;

· изучение формата машинных команд;

· выяснение организации обработки прерываний.

Архитектура семейства MCS-51 в значительной мере предопределяется ее назначением - построение компактных и дешевых цифровых устройств. Все функции МК реализуются с помощью единственной микросхемы. В состав семейства MCS-51 входит целый ряд микросхем от самых простых микроконтроллеров до достаточно сложных. Микроконтроллеры семейства MCS-51 позволяют выполнять как задачи управления различными устройствами, так и реализовывать отдельные узлы аналоговой схемы. Все микросхемы этого семейства работают с одной и той же системой команд, большинство из них выполняется в одинаковых корпусах с совпадающей цоколевкой (нумерация выводов для корпуса). Это позволяет использовать для разработанного устройства микросхемы разных фирм - производителей (таких какIntel, Dallas, Atmel, Philips и т.д.) без переделки принципиальной схемы устройства и программы.

MCS-51 выполнен по Гарвардской архитектуре, где адресные пространства памяти программ и данных разделены.

Структурная схема контроллера представлена на рис.2.3 и состоит из следующих основных функциональных узлов: блока управления, арифметико-логического устройства, блока таймеров/счетчиков, последовательного интерфейса и прерываний, программного счетчика (счетчика команд), памяти данных и памяти программ.

Двусторонний обмен осуществляется с помощью внутренней 8-разрядной магистрали данных. Рассмотрим подробнее назначение каждого блока. По такой схеме построены практически все представители семейства MCS-51. Различные микросхемы этого семейства различаются только регистрами специального назначения (в том числе и количеством портов). Система команд всех контроллеров семейства MCS-51 содержит 111 базовых команд с форматом 1, 2 или 3 байта и не изменяется при переходе от одной микросхемы к другой. Это обеспечивает прекрасную переносимость программ с одной микросхемы на другую.

Блок управления и синхронизации (Timing and Control) предназначен для выработки синхронизирующих и управляющих сигналов, обеспечивающих координацию совместной работы блоков ОЭВМ во всех допустимых режимах ее работы. В состав блока управления входят:


  • устройство формирования временных интервалов,
  • комбинационная схема ввода-вывода,
  • регистр команд,
  • дешифратор команд.

Входные и выходные сигналы блока управления и синхронизации :

1 PSEN – разрешение программной памяти;

2 ALE – выходной сигнал разрешения фиксации адреса;

3 PROG – сигнал программирования;

4 EA – блокировка работы с внутренней памятью;

5 VPP – напряжение программирования;

6 RST – сигнал общего сброса.

Устройство формирования временных интервалов необходимо для синхронизации последовательности состояний ЦП, образующих машинный цикл, а также для правильной работы всех внутреннихзащелок и выходных буферов портов. Машинный цикл состоит из шести последовательныхсостояний (States) от S1 до S6, каждое из которых, в свою очередь, подразделяется на две фазы:

фазу 1 (Phase 1 - P1) и фазу 2 (Phase 2 - P2). Таким образом, машинный цикл может быть определен как последовательность временных интервалов S1P1, S1P2, S2P1,....,S6P2. Длительность фазы равна периоду следования тактовых импульсов, поэтому машинный цикл занимает 12 тактовых периодов.

Количество машинных циклов определяет продолжительность выполнения команд. Практически все команды выполняются за один или два машинных цикла, кроме команд умножения и деления, продолжительность выполнения которых составляет четыре машинных цикла. Логика ввода - вывода предназначена для приема и выдачи сигналов, обеспечивающих обмен информации с внешними устройствами через порты ввода вывода Р0-Р3.

Регистр команд предназначен для записи и хранения 8-ми разрядного кода операции выполняемой команды. Код операции, с помощью дешифратора команд и логики управления ЭВМ, преобразуется в микропрограмму выполнения команды.

Рис 2.3. Структурная схема однокристального микроконтроллера Intel 8051

(семейство MCS-51)

Арифметико-логическое устройство (ALU) представляет собой параллельное восьмиразрядное устройство, обеспечивающее выполнение арифметических и логических операций. АЛУ состоит из:

  • регистров временного хранения -TMP1 и TMP2,
  • ПЗУ констант,
  • сумматора,
  • дополнительного регистра - регистра В,
  • аккумулятора - ACC,
  • регистра слова состояния программ (регистр флагов)- PSW .

Регистры временного хранения TMP1, TMP2 - восьмиразрядные регистры, предназначенные для приема и хранения операндов на время выполнения операций над ними. Эти регистры программно не доступны.

ПЗУ констант обеспечивает выработку корректирующего кода при двоично-десятичном представлении данных, кода маски при битовых операциях и кода констант.

Параллельный восьмиразрядный сумматор представляет собой схему комбинационного типа с последовательным переносом, предназначенную для выполнения арифметических операций сложения, вычитания и логических операций сложения, умножения, неравнозначности и тождественности.

Регистр B - восьмиразрядный регистр, используемый во время операций умножения и деления. Для других инструкций он может рассматриваться как дополнительный сверхоперативный регистр.

Аккумулятор - восьмиразрядный регистр, предназначенный для приема и хранения результата, полученного при выполнении арифметико-логических операций или операций сдвига.

Регистр состояния программ PSW (Programm Status Word) предназначен для хранения слова состояния выполняемых команд. При выполнении многих команд в ALU формируется ряд признаков операции (флагов), которые фиксируются в регистре слова состояния программы (PSW). В табл. 1 приводится перечень флагов PSW, даются их символические имена и описываются условия их формирования.

Блок прерываний и последовательного интерфейса - UART(Universal Asynchronous Receiver/Transmitter) предназначен для организации ввода - вывода последовательных потоков информации и организации системы прерывания программ.

По определению прерывание означает временное прекращение основного процесса вычислений для выполнения некоторых запланированных или незапланированных действий, вызываемых работой аппаратуры или программы.

Эти действия могут носить сервисный характер, быть запросами со стороны программы пользователя на выполнение обслуживания либо быть реакцией на нештатные ситуации.

В настоящее время различными фирмами выпускается множество модификаций и аналогов этого семейства, как фирмой Intel, так и другими производителями, тактовая частота и объем памятивозросли в десятки раз и продолжают повышаться. Дополняется и набор встроенных в БИС модулей, в большое число современных моделей встроен рези- дентный быстродействующий АЦП, имеющий до 12, а сейчас может быть и более разря- дов. Но в основе семейства МСS51 БИС 8051, 80С51, 8751, 87С51, 8031, 80С31 фирмы Intel, первые образцыкоторыхбыли выпущеныв 1980 году.

Микроконтроллеры семейства MCS51 выполнены по высококачественной n-МОП технологии (серия 8ХХХ, аналог - серия 1816 в России и Белоруссии) и k-МОП техноло- гии (серия 8ХСХХ, аналог - серия 1830). Второй символ, следующий за 8 означает: 0 – РПЗУ на кристалле нет, 7 – РПЗУ объемом 4К с ультрафиолетовым стиранием. Третий символ: 3 – ПЗУ накристалленет, 5 – если нетРПЗУ, то на кристалле масочное ПЗУ.

И так 80С51 – БИС по k-МОП технологии с масочным ПЗУ на кристалле, 8031 – БИС n-МОП без памяти программ (ПЗУ, РПЗУ) на кристалле, 8751 – БИС n-МОП с ре- зидентным (размещенным на кристалле) РПЗУ с ультрафиолетовым стиранием. Мы да- лее и будем рассматривать БИС 8751, делая, если нужно оговорки об отличиях других схем, приводя те параметры, которые были опубликованы для первых серийных БИС. Дополнительную информацию о всех современных модификациях Вы, при необходимо- сти, можете найти в фирменных справочниках и технической документации.

А. Общие характеристики и назначение выводов

Основу семейство MCS51 составляет пять модификаций МК (имеющих идентич- ные основные характеристики), основное различие между которыми состоит в реали- зации памяти программ и мощности потребления (см. таблицу 3.1). Микроконтоллер восьмиразрядный, т.е. имеет команды обработки восьмиразрядных слов, имеет Гарвард- скую архитектуру, тактовая частота у базовых образцов семейства составляет 12 МГц.

Таблица 3.1.

Микро- схемы

Внутренняя память про- грамм, байт

Тип памяти программ

Внутренняя память данных, байт

Тактовая частота, МГц

Ток потреб- ления, мА

МК 8051 и 80С51 содержат масочно-программируемое при изготовлении кристалла ПЗУ памяти программ емкостью 4096 байт и рассчитаны на применение в массовой продукции. МК 8751 содержит РПЗУ емкостью 4096 байт с ультрафиолетовым стиранием и удобна на этапе разработки системы при отладке программ, а также при производстве не- большими партиями или при создании систем, требующих в процессе эксплуатации пе-

риодической подстройки.

МК 8031 и 80С31 не содержат встроенной памяти программ. Они, как и описанные ранее модификации могут использовать до 64 Кбайт внешней памяти программ и эффек- тивно использоваться в системах, требующих существенно большего по объему (чем 4 Кбайт на кристалле) ПЗУ памяти программ.

Каждый МК семейства содержит резидентную память данных емкостью 128 байт с возможностью расширения общего объема оперативной памяти данных до 64 Кбайт за счет использования внешних ИС ОЗУ.

    центральный восьмиразрядный процессор;

    память программ объемом 4 Кбайт (только 8751 и 87С51);

    память данных объемом 128 байт;

    четыре восьмиразрядных программируемых порта ввода-вывода;

    два 16-битовых многорежимных таймера/счетчика;

    систему автовекторных прерываний с пятью векторами и двумя программно управ- ляемыми уровнями приоритетов;

    последовательный интерфейс, включающий универсальный дуплексный приемопе- редатчик, способный функционировать в четырех режимах;

    тактовый генератор.

Система команд МК содержит 111 базовыхкомандс форматом1, 2, или 3 байта. Микроконтроллер имеет:

    32 регистра общего назначения РОН, организованных как четыре банка по восемь регистров с именами R0… R7, выбор того или иного банка определяется программой пу- тем установки соответствующих бит в регистре состояния программы PSW;

    128 программно-управляемых флагов (битовый процессор, см. далее);

    набор регистров специальных функций, управляющих элементами МК. Существуют следующие режимы работы микроконтроллера:

1). Общий сброс. 2).Нормальное функционирование. 3).Режим пониженно- го энергопотребления и режимхолостого хода. 4). Режим программирования ре- зидентного РПЗУ, если оно есть.

Мы здесь основное внимание уделим первым двум режимам работы, подробное описаниесоставаи работыМКвовсех режимахприведено в приложенииП1.

РОН и зона битового процессора расположены в адресном пространстве рези- дентной ОЗУ с адресами от 0 до80h.

В верхней зоне адресов резидентной оперативной памяти расположены регистры спе- циальных функций (SFR, Special Function Registers). Их назначение приведено в табл. 3.2.

Таблица 3.2.

Обозначение

Наименование

Аккумулятор

Регистр В

Регистр состояния программы

Указатель стека

Указатель данных. 2 байта:

Младший байт

Старший байт

Регистр приоритетов прерываний

Регистр разрешения прерываний

Регистр режимов таймера/счетчика

Регистр управления таймера/счетчика

Таймер/счетчик 0. Старший байт

Таймер/счетчик 0. Младший байт

Таймер/счетчик 1. Старший байт

Таймер/счетчик 1. Младший байт

Управление последовательным портом

Буфер последовательного порта

Управление потреблением

* - регистры, допускающие побитовую адресацию

Кратко рассмотрим функции регистров SFR, приведенных в таблице 3.2.

Аккумулятор АCC - регистр аккумулятора. Команды, предназначенные для рабо-

ты с аккумулятором, используют мнемонику "А", например, MOV А, Р2 . Мнемоника "АСС" используется, к примеру, при побитовой адресации аккумулятора. Так, символи- ческое имя пятого бита аккумулятора при использовании ассемблера А5М51 будет сле- дующим: АСС. 5. .

Регистр В . Используется во время операций умножения и деления. Для других инструкций регистр В может рассматриваться как дополнительный сверхоперативный регистр.

Регистр состояния программы PSW содержит информацию о состоянии про- граммы и устанавливается частично автоматически по результату выполненной опера- ции, частично пользователем. Обозначение и назначение разрядов регистра приведены соответственно в таблицах 3.3 и 3.4.

Таблица 3.3.

Обозначение

Таблица 3.4.

Обозна- чение

Назначение битов

Доступ к биту

Флаг переноса. Изменяется во время выполнения ряда арифметических и логических инструкций.

Аппаратно или программно

Флаг дополнительного переноса. Аппаратно уста- навливается/сбрасывается во время выполнения инструкций сложения или вычитания для указания переноса или заема в бите 3 при образовании младшего полубайта результата (D0-D3).

Аппаратно или программно

Флаг 0. Флаг, определяемый пользователем.

Программно

Программно

Указатель банка рабочих регистров

Программно

Банк 0 с адресами (00Н - 07Н) Банк 1 с адресами (08Н – 0FН) Банк 2 с адресами (10Н - 17Н) Банк 3 с адресами (18Н – 1FН)

Флаг переполнения. Аппаратно устанавливается или сбрасывается во время выполнения арифмети- ческих инструкций для указания состояния пере- полнения

Аппаратно или программно

Резервный. Содержит триггер, доступный по запи- си и чтению, который можно использовать

Бит четности. Аппаратно сбрасывается или уста- навливается в каждом цикле инструкций для указа- ния четного или нечетного количества разрядов ак- кумулятора, находящихся в состоянии "1".

Аппаратно или программно

Указатель стека - 8-битовый регистр, содержимое которого инкрементирует- ся перед записью данных в стек при выполнении команд PUSH и CALL. При начальном сбросе указатель стека устанавливается в 07Н, а область стека в ОЗУ данных начинается с адреса 08Н. При необходимости путем переопределения указателя стека область стека может быть расположена в любом месте внутреннего ОЗУ данных микроконтроллеры.

Указатель данных DPTR состоит из старшего байта (DPH) и младшего байта

(DPL). Содержит 16-битовый адрес при обращении к внешней памяти. Может использо-

ваться как 16-битовый регистр или как два независимых восьмибитовых регистра.

Порт0 - ПортЗ. Отдельными битами регистров специальных функций Р0, Р1, Р2, РЗ являются биты -"защелки" выводов портовР0, Р1, Р2, РЗ.

Буфер последовательного порта SBUF представляет собой два отдельных реги- стра: буфер передатчика и буфер приемника. Когда данные записываются в SBUF, они поступают в буфер передатчика, причем запись байта в SBUF автоматически иницииру- ет его передачу через последовательный порт. Когда данные читаются из SBUF, они вы- бираются из буфера приемника.

Регистры таймера. Регистровые пары (ТН0, ТL0) и (ТН1, TL1) образуют 16-

битовые счетные регистры соответственно таймера/счетчика 0 и таймера/счетчика 1.

Регистры управления. Регистры специальных функций IР, IЕ, ТМOD, ТСОN, SCON и РСОN содержат биты управления и биты состояния системы прерываний, тай-

меров/счетчиков и последовательного порта. Они будут подробно рассмотрены далее.

RxD TxD INT0 INT1 T0 T1 WR

P1.2 P1.3 P1.4 P1.5 P1.6 P1.7

RST BQ2 BQ 1 EA

P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 P3.6 P3.7

P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7

P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7

МК при функционировании обеспечивает:

    минимальное время выполнения команд сложения-1 мкс;

    аппаратное умножение и деление с минимальным време- нем выполнения - 4 мкс.

В МК предусмотрена возможность задания частоты внутреннего генератора с помощью кварца, LС-цепочки или внешнего генератора.

Расширенная система команд обеспечивает побайтовую и побитовую адресацию, двоичнуюи двоично-десятичную арифметику, индикацию пере- полнения и определения четности/нечетности, воз- можность реализации логического процессора.

Важнейшей и отличительной чертой архитек- туры семейства MCS51 является то, что АЛУ может наряду с выполнением операций над 8-разрядными типами данных манипулировать одноразрядными данными. Отдельные программно-доступные биты могут быть установлены, сброшены или заменены их дополнением, могут пересылаться, проверяться и

Рис.3.2. Внешние выводы

микроконтроллера

использоваться в логических вычислениях. Тогда как поддержка простых типов данных (при сущест-

вующей тенденции к увеличению длины слова) может с первого взгляда показаться ша- гом назад, этокачестводелает микроконтроллеры семействаMCS51 особенно удобными для применений, в которых используются контроллеры. Алгоритмы работы по- следних по своей предполагают наличие входных и выходных булевых переменных, которые сложно реализовать при помощи стандартных микропроцессоров. Все эти свой- ства в целом называются булевым процессором семейства MCS51. Благодаря такому мощному АЛУ набор инструкций микроконтроллеры семейства MCS51 одинаково хоро- шо подходит как для применений управления в реальном масштабе времени, так и для ал- горитмов с большим объемом данных.

Схемотехническое изображение микроконтроллера представлено на рис. 3.2. В ба- зовом варианте он упакован в 40-выводной DIP корпус. Рассмотрим назначение выводов.

Начнем с выводов питания «0 В» и «5 В» , по которым он получает основное пита- ние. Ток потребления приведен в табл. 3.1.

Вывод «RST» - сброс микроконтроллера. При подаче на этот вывод активного вы- сокого уровня запускается режим общего сброса и МК производит следующие действия:

Устанавливает счетчик команд PC и все регистры специальных функций, кроме защелок портов Р0-РЗ, указателя стека SP и регистра SBUF, в ноль;

    указатель стека принимает значение равное 07Н;

    запрещает все источники прерываний, работу таймеров-счетчиков и последовательного

    выбирает БАНК 0 ОЗУ, подготавливает порты Р0-РЗ для приема данных и опре-

деляет выводы ALE и РМЕ как входы для внешней синхронизации;

      в регистрах специальных функций PCON, IP и IE резервные биты при- нимают случайные значения, а все остальные биты сбрасываются в ноль;

      в регистре SBUF устанавливаются случайные значения.

      устанавливает фиксаторы-защелки портов Р0-РЗ в "1".

Состояния регистров микроконтроллера после сброса приведены в таблице 3.5.

Таблица 3.5.

Информация

Неопределенная

0ХХХ0000В для k-MOП 0XXXXXXXB для n-МОП

Вывод RST имеет и альтернативную функцию. Через него подается резервное питания для сохранения неизменным содержимого ОЗУ микроконтроллера при снятии основного.

Выводы BQ1, BQ2 предназначены для подключения кварцевого резонатора, оп- ределяющего тактовую частоту работы МК.

Вывод ЕА` (E xternal A dress внешний адрес) - предназначен для активизации ре- жима чтенияуправляющих кодов из внешней памяти программ, при подаче на этот вывод активного низкогоуровня. Вывод имеет иальтернативное назначение (функцию). На него подается напряжение программирования РПЗУ в режиме программирования.

Вывод PME (P rogram M emory E nable разрешение памяти программ ) - предна- значен для управления циклом чтения из памяти программ и автоматически активизиру- ется МК в каждом машинном цикле.

Вывод ALE (A dress L ength E nable разрешение младшего адреса) стробирует вы- вод младшей части адреса по порту Р0. Вывод используется и при программировании РПЗУ, при этом на него подается стробирующий процесс программирования импульс.

МК содержит четыре группы портов: Р0, Р1, Р2, и Р3. Это оставшиеся из 40-авыводов микроконтроллера. Эти порты могут служитьдля побитного ввода – вывода информации, но помимо этого каждый из них имеет свою специализацию. Обобщенная функциональная схе- ма порта представлена на рис. 3.3. Порт содержит выходные ключи на полевых транзисторах, подключенные к выводу, переключатель функций, защелку на D-триггере и логику управле- ния. Взащелку по внутреннейшине МК можетбытьзаписана единица илиноль. Эта инфор- мация через переключатель функций поступает на выходные ключи и вывод МК. В состоя- нии единицы оба транзистора N и N1 закрыты, но открыт N2. В состоянии нуля N открывает-

ся, а N2 закрывается. В момент, когда порт выполняет альтернативную функцию, на которую онспециализирован, состояние защелкис вывода снимается. Микроконтроллер отдельно мо- жет считать состояние защелки порта и состояние его вывода, установленное внешним сигна- лом. Для этого в ассемблере МК имеются специальные команды, активизирующие соответст- вующие линии. Для чтения состояния вывода в защелку соответствующего порта должна

быть предварительно записана

От внутрен-

Управление Защелка

Переключатель функций

Vcc

Выходные

единица. При активизации линии «чтение защелки» на выходе ячейки «И», к которой подключенаэта линияпоявля-

ней шины МК D Q

Запись в защелку C Q

Чтение защелки

Вывод порта

ется состояние защелки, по- ступающее на внутреннюю шину МК, при активизации

«чтение вывода» - состояние внешнего вывода порта.

Порт Р0 – универсаль- ный двунаправленный порт

ввода-вывода. За этим портом

закреплена функция организа- ции внешних шин адресов и

Рис. 3.3. Функциональная схема порта микроконтроллера

данных для расширенияпамя- ти программ и памяти данных

микроконтроллера. Когда идет обращение к внешней памяти программ или выполняется ко- манда обращения к внешней памяти данных, на выводах порта устанавливается младшая часть адреса (А0…А7), которая стробируется высоким уровнем на выводе ALE. Затем, при записи в память данных, записываемая информация с внутренней шины МК поступает на выводы порта Р0. В операциях чтения, наоборот, информация с выводов порта поступает на внутреннюю ши- ну. Особенностью порта Р0 является отсутствие «подтягивающего» транзистора N2, обеспечи- вающего подачу питания на вывод. При записи в защелку порта единицы он просто переводит- ся в высокоимпедансное состояние, что необходимо для нормальной работы шины данных. При необходимости запитывать через вывод какие либо внешние устройства, следует преду- сматривать внешние резисторы от цепей питания на вывод порта.

Порт Р1 – универсальный двунаправленный порт ввода-вывода без альтернатив- ных функций.

Порт Р2 – универсальный двунаправленный портввода-вывода, в качестве альтер- нативной функции осуществляющий выдачу старшей части адреса (А8…А15) при обра- щении к внешней памяти.

Порт Р3 – универсальный двунаправленный порт ввода-вывода, каждый бит кото- рого предусматривает выполнениеразличныхальтернативных функций. Приэтом альтер- нативные функции реализуются только в том случае, если в защелки выводов порта запи- саны единицы, в противном случае выполнение альтернативных функций блокируется. Перечислим их раздельно для каждого бита:

Р3.0 RxD (R ead eX ternal D ate, читать внешние данные) – вход встроенного после- довательного приемо-передатчика.

Р3.1 ТxD (T ype eX ternal D ate, передавать внешние данные) – выход встроенного последовательного приемо-передатчика.

Р3.2 INT0` (INT errupt, прерывание) – вход внешнего прерывания 0.

Р3.3 INT1` – вход внешнего прерывания 1.

Р3.4 С/T0 – вход нулевого встроенного таймера/счетчика.

Р3.5 С/T1 – вход первого встроенного таймера/счетчика.

Р3.6 WR` (W rite, писать) – вывод управления циклом записи в памяти данных.

Р3.7 RD` (R ead, читать) – вывод управления циклом чтения из памяти данных.

Выводы портаР1, Р2 и Р3 способны в единице выдавать тококоло0.2мА и принимать в нуле ток 3 мА, выводы порта Р0 мощнее и способны в единице выдавать ток около 0.8мА и при- нимать в нуле ток 5 мА. Краткая информация о назначении выводов микроконтроллера приведе- на в таблице 3.6.

Таблица 3.6.

Обозначение

Назначение вывода

8-разрядныи двунаправленный порт Р1. Вход адреса А0-А7 при проверке внутреннего ПЗУ (РПЗУ)

вход/ выход

Сигнал общего сброса. Вывод резервного пита- ния ОЗУ от внешнего источника (для 1816)

8-разрядный двунаправленный порт P3 с допол- нительными функциями

вход/ выход

Последовательные данные приемника - RхD

Последовательные данные передатчика - ТхD

Вход внешнего прерывания 0- INТ0`

Вход внешнего прерывания 1-INT1`

Вход таймера/счетчика 0: - Т0

Вход таймера/счетчика 1: - Т1

Выход стробирующего сигнала при записи во внешнюю память данных: - WR`

Выход стробирующего сигнала при чтении из внешней памяти данных – RD`

Выводы для подключения кварцевого резонато- ра.

выход вход

Общий вывод

8-разрядный двунаправленный порт Р2. Выход адреса А8-А15 в режиме работы с внешней па- мятью. В режиме проверки внутреннего ПЗУ выводы Р2.0 - Р2.6 используются как вход адреса А8-А14. Вывод Р2.7 - разрешение чтения ПЗУ.

вход/ выход

Разрешение программной памяти

Выходной сигнал разрешения фиксации адреса. При программировании РПЗУ сигнал: PROG

вход/ выход

Блокировка работы с внутренней памятью. При программировании РПЗУ подается сигнал UРR

вход/ выход

8-разрядный двунаправленный порт Р0. Шина адреса/данных г работе с внешней памятью. Вы- ход данных D7-D0 в режиме проверки внутрен- него ПЗУ (РПЗУ).

вход/ выход

Вывод питания от источника напряжения +5В

Поделиться