LCD I2C модуль подключение к Arduino. Подключение LCD к плате Ардуино (Arduino) Lcd 1602 мигание курсором при выборе элемента

Жидкокристаллический дисплей (Liquid Crystal Display) сокращенно LCD построен на технологии жидких кристаллов. При проектировании электронные устройства, нам нужно недорогое устройство для отображения информации и второй не менее важный фактор наличии готовых библиотек для Arduino. Из всех доступных LCD дисплеев на рынке, наиболее часто используемой является LCD 1602A, который может отображать ASCII символа в 2 строки (16 знаков в 1 строке) каждый символ в виде матрицы 5х7 пикселей. В этой статье рассмотрим основы подключения дисплея к Arduino.

Технические параметры

Напряжение питания: 5 В
Размер дисплея: 2.6 дюйма
Тип дисплея: 2 строки по 16 символов
Цвет подсветки: синий
Цвет символов: белый
Габаритные: 80мм x 35мм x 11мм

Описание дисплея

LCD 1602A представляет собой электронный модуль основанный на драйвере HD44780 от Hitachi. LCD1602 имеет 16 контактов и может работать в 4-битном режиме (с использованием только 4 линии данных) или 8-битном режиме (с использованием всех 8 строк данных), так же можно использовать интерфейс I2C . В этой статье я расскажу о подключении в 4-битном режиме.

Назначение контактов:
VSS: «-» питание модуля
VDD: «+» питание модуля
VO: Вывод управления контрастом
RS: Выбор регистра
RW: Выбор режима записи или чтения (при подключении к земле, устанавливается режим записи)
E: Строб по спаду
DB0-DB3: Биты интерфейса
DB4-DB7: Биты интерфейса
A: «+» питание подсветки
K: «-» питание подсветки

На лицевой части модуля располагается LCD дисплей и группа контактов.

На задней части модуля расположено два чипа в «капельном» исполнении (ST7066U и ST7065S) и электрическая обвязка, рисовать принципиальную схему не вижу смысла, только расскажу о резисторе R8 (100 Ом), который служит ограничительным резистором для светодиодной подсветки, так что можно подключить 5В напрямую к контакту A. Немного попозже напишу статью в которой расскажу как можно менять подсветку LCD дисплея с помощью ШИП и транзистора.

Подключение LCD 1602A к Arduino (4-битном режиме)

Необходимые детали:
Arduino UNO R3 x 1 шт.
LCD-дисплей 1602A (2×16, 5V, Синий) x 1 шт.
Провод DuPont, 2,54 мм, 20 см, F-F (Female - Female) x 1 шт.
Потенциометр 10 кОм x 1 шт.
Разъем PLS-16 x 1 шт.
Макетная плата MB-102 x 1 шт.
Кабель USB 2.0 A-B x 1 шт.

Подключение :
Для подключения будем использовать макетную плату, схема и таблица подключение LCD1602a к Arduino в 4-битном режиме можно посмотреть на рисунке ниже.

Подключение дисплея к макетной плате будет осуществляться через штыревые контакты PLS-16 (их необходимо припаять к дисплею). Установим модуль дисплея в плату breadboard и подключим питание VDD (2-й контакт) к 5В (Arduino) и VSS (1-й контакт) к GND (Arduino), далее RS (4-й контакт) подключаем к цифровому контакту 8 (Arduino). RW (5-й контакт) заземляем, подключив его к GND (Arduino), затем подключить вывод E к контакту 8 (Arduino). Для 4-разрядного подключения необходимо четыре контакта (DB4 до DB7). Подключаем контакты DB4 (11-й контакт), DB5 (12-й контакт), DB6 (13-й контакт) и DB7 (14-й контакт) с цифровыми выводами Arduino 4, 5, 6 и 7. Потенциометр 10K используется для регулировки контрастности дисплея, схема подключения LCD дисплея 1602а, показана ниже

Библиотека уже входит в среду разработки IDE Arduino и нет необходимости ее устанавливать. Скопируйте и вставьте этот пример кода в окно программы IDE Arduino и загрузите в контроллер.

/* Тестирование производилось на Arduino IDE 1.6.11 Дата тестирования 20.09.2016г. */ #include LiquidCrystal lcd(8, 9, 4, 5, 6, 7); void setup() { lcd.begin(16, 2); // Инициализирует LCD 16x2 } void loop() { lcd.setCursor(0,0); // Установить курсор на первыю строку lcd.print("Hello, world"); // Вывести текст lcd.setCursor(0,1); // Установить курсор на вторую строку lcd.print("www.robotchip.ru"); // Вывести текст }

Скачать программу

Немного о программе .
Для облегчения связи между Arduino и LCD дисплеем, используется встроенный в библиотеке в IDE Arduino « LiquidCrystal.h « — которая написана для LCD дисплеев, использующих HD44780 (Hitachi) чипсет (или совместимые микросхемы). Эта библиотека может обрабатывать как 4 — битном режиме и 8 — битном режиме подключение LCD.

Ссылки
Документация к LCD1602A

Купить на Aliexpress
Контроллер Arduino UNO R3

Дисплеи LCD 1602 размера, созданные на базе HD44780 контроллера, в наши дни всё ещё остаются одними из самых доступных, простых и востребованных, чтобы разрабатывать какие бы то ни было электронные устройства. Неудивительно, что их можно увидеть как в простых, собранных буквально на коленке агрегатах, так и в более серьезных промышленных, например автоматах для приготовления кофе. Именно с таким дисплеем и собираются наиболее популярные модули и шилды по тематике Arduino, например LCD I2C модуль и LCD Keypad Shield.

Данная статья подробно с изображениями рассказывает, как подключить LCD к Arduino и отобразить информацию.

Шаг 1: LCD-дисплей 1602 для Ардуино

Дисплеи 1602 имеют два различных исполнения :

Жёлтая подсветка с чёрными буквами
- либо (это бывает гораздо чаще) синяя подсветка с белыми.

Размерность дисплеев на HD44780 контроллере бывает самой разной, а управляются они одинаково. Наиболее распространённые из размерностей – 16 на 02 (то есть по 16 символов в двух строках) или 20 на 04. Сами же символы имеют разрешение в 5 на 8 точек.

Большая часть дисплеев не поддерживает кириллицу (за исключением дисплеев CTK-маркировки). Но такая проблема частично решаема, и далее статья подробно рассказывает, как это сделать.

На дисплее есть 16-PIN разъём для подключения. Выводы имеют маркировку с тыльной стороны платы , она следующая:

1 (VSS) – питание на минус для контроллера.
2 (VDD) – питание на плюс для контроллера.
3 (VO) – настройки управления контрастом.
4 (RS) – выбор для регистра.
5 (R/W) – чтение и запись, в частности, запись при соединении с землёй.
6 (E) – активация (enable).
7–10 (DB0-DB3) – младшие биты от восьмибитного интерфейса.
11–14 (DB4-DB7) – старшие биты от интерфейса
15 (A) – положительный анод на питание подсветки.
16 (K) – отрицательный катод на питание подсветки.

Шаг 2: Подключаем ЖК-дисплей

Перед тем как подключать дисплей и передавать на него информацию, стоит проверить его работоспособность. Сперва подайте напряжение на VSS и VDD контроллер, запитайте подсветку (A, K), далее настройте контрастность. Для таких настроек подойдёт потенциометр с 10 кОм, форма его не важна. На крайние ноги подают +5V и GND, а ножку по центру соединяют с VO выводом.

Когда на схему подаётся питание, нужно добиться необходимого контраста, если он настраивается неправильно, то и изображение на экране видно не будет. Чтобы настроить контраст, нужно «поиграть» с потенциометром. Когда схема будет собрана правильно и контраст настроен верно, верхняя строка на экране должна заполниться прямоугольниками.

Чтобы дисплей работал, применяется встроенная в Arduino IDE среду специальная библиотека LiquidCrystal.h, о которой я напишу ниже. Он может действовать в 8-битном и в 4-битном режиме. В первом варианте применяют лишь младшие и старшие биты (BB0-DB7), во втором – только младшие (BB4-DB7).

Но применение 8-битного режима в этом дисплее – неправильное решение, преимущества в скорости почти нет, поскольку частота обновления у него всегда меньше 10 раз за секунду. Чтобы выводился текст, надо присоединить выводы DB7, DB6, DB5, DB4, E и RS к выводам контроллера. Присоединять их допустимо к любым пинам Arduino, главное – задание верной последовательности в коде.

Если необходимого символа пока что нет в памяти контроллера, то можно его определить вручную (всего до семи символов). Ячейка в рассматриваемых дисплеях имеет расширение в пять на восемь точек. Задача создания символа в том, чтобы написать битовую маску и расставить единички в местах, где точки должны гореть, а нолики – где не должны.

Рассмотренная выше схема подключения не всегда хороша, т. к. на Arduino занимается минимум шесть цифровых выходов.

Шаг 3: Схема обхода

Изучим вариант, как обойти это и обойтись только двумя. Нужен добавочный модуль-конвертор для LCD в IIC/I2C. Как он припаивается к дисплею и присоединяется к Arduino, можно увидеть на изображениях ниже.

Но такой вариант подключения действует лишь со специальной библиотекой LiquidCrystal_I2C1602V1, которую, впрочем, нетрудно найти в Сети и установить, после чего можно без проблем им пользоваться.

Шаг 4: Библиотека LiquidCrystal.h

Библиотеку LiquidCrystal.h можно скачать с официального ресурса - . Также вы можете скачать ниже по ссылкам:

Скетч

После того, как вы скачали архив замените папку LiquidCrystal в папке с библиотеками вашего каталога установки Arduino.

Вы можете увидеть примерный скетч в Файл -> Примеры -> LiquidCrystal -> HelloWorld_SPI (File -> Examples -> LiquidCrystal -> HelloWorld_SPI).

На этом наш очередной урок завершен. Желаем вам качественных проектов!

Что является неотъемлемой частью большого количества электронных девайсов? Конечно, средства индикации и графического вывода данных. Пользователю всегда удобнее и приятнее когда результат работы «умной коробочки» можно увидеть визуально. Поэтому сегодня мы подключим к STM32 дисплей для вывода текста и цифр. Героем наших экспериментов станет довольно-таки популярный дисплей от Winstar’а. Вот кстати в комментариях появилось важное уточнение, что методика в принципе одинакова для всех дисплеев на базе HD44780. Спасибо JekaKey за важное дополнение)

Для начала дисплей надо собственно подключить к контроллеру. Скачиваем даташит и ищем распиновку WH1602. Вот смотрите:

Как вы уже поняли, дисплей WH1602 имеет 16 выводов. Рассмотрим каждый в отдельности…

Пины Vss, Vdd и K нужно подключать к земле и к питанию, то есть прямо так, как указано в таблице, тут без сюрпризов и даже нечего обсуждать)

Вывод под номером 3 служит для регулировки контрастности – если подадим туда +5В, то не увидим абсолютно ничего, а если закоротим вывод на землю, то будем любоваться двумя рядами черных квадратов 😉 Естественно, это нас не устраивает, поэтому туда надо повесить потенциометр (резистор с переменным сопротивлением) для регулировки контрастности. Самая лучшая видимость символов обеспечивается напряжением 0.5-0.7 В на этом выводе дисплея.

Пин RS – это уже вывод, которым мы сами будем управлять при помощи микроконтроллера. Низкий уровень напряжения (0) на этом выводе означает, что сейчас последует команда, высокий уровень (1) – значит сейчас будут данные для записи в память дисплея.

Пин R/W – тут понятно, либо мы читаем данные (флаг занятости дисплея, например), в этом случае на этом выводе 1, либо записываем команду/данные в дисплей, тогда тут у нас 0.

DB7 – DB0 – шина данных, и этим все сказано)

Пин E – так называемый Enable signal. Нужен он вот для чего. Чтобы работать с дисплеем – записывать данные или подавать команду – нам надо выдать на этот вывод положительный импульс. То есть, процедура будет выглядеть следующим образом:

  1. На пины RS, R/W, DB7 – DB0 – нужные сигналы, соответствующие нашей команде.
  2. Подаем единицу на вывод E.
  3. Ждемс (по даташиту – не менее 150 нс)
  4. Подаем на вывод E низкий уровень (0).

На ножку A/Vee надо сунуть 4.2 В для питания подсветки дисплея.

Вот так вот происходит общение с дисплеем WH1602.

С подключением WH1602 разобрались, но прежде, чем переходить к примеру, рассмотрим какие вообще команды понимает наш дисплей. Для этого лезем в даташит и находим интересную таблицу:

Тут описаны все команды и сигналы, которые должны быть на соответствующих выводах WH1602 для каждой конкретной команды. Вот хотим мы например, очистить дисплей, смотрим в таблицу, и вот она нужная команда! Clear Display!

Подаем на выводы RS, R/W, DB7, DB6, DB5, DB4, DB3, DB2, DB1 нули, а на ножку DB0 – единицу. Готово, что дальше? Верно, единицу на пин E, затем ожидаем некоторое время и снова опускаем E в ноль. Все, дисплей очищен 😉 Только перед выполнением следующей команды необходимо выдержать паузу, указанную в даташите для каждой команды. Более эффективным будет опрос флага занятости, как только он сбросился в 0 – можно работать дальше. Для чтения этого флага тоже есть специальная команда, так что с этим все понятно) Идем дальше…

А, собственно, с теорией все, можно уже что-нибудь попробовать написать. Я для облегчения работы с дисплеем сделал небольшую библиотечку, сейчас посмотрим, как ее можно использовать. Для начала скачиваем

Получаем в свое распоряжение 2 файла, MT_WH1602.c и MT_WH1602.h. Отрываем второй, тут нам надо произвести выбор выводов и используемого контроллера.

Дисплей у меня, кстати, подключен так:

RS – PC2
R/W – PB10
E – PB14
DB7 – PD2
DB6 – PC12
DB5 – PA8
DB4 – PA10
DB3 – PA15
DB2 – PD11
DB1 – PA3
DB0 – PA5

Открываем файл MT_WH1602.h:

#define PLATFORM (STM32F10x)

Далее выбираем выводы микроконтроллера, к которым у нас подключен дисплей. Только сначала зададим, какие порты у нас задействованы. Вот при моем подключении у меня используются GPIOA, GPIOB, GPIOC и GPIOD, пишем:

Аналогично для других ножек микроконтроллера.

С настройкой покончили, продолжаем) Для вызова команд, приведенных в начале статьи в файле MT_WH1602.c содержатся следующие функции (названы они по названию команд, так что тут, думаю, все понятно):

void MT_WH1602_ClearDisplay(void ) ; void MT_WH1602_ReturnHome(void ) ; void MT_WH1602_EntryModeSet (bool IDaddress, bool shift) ; void MT_WH1602_DisplayOnOff (bool Dbit, bool Cbit, bool Bbit) ; void MT_WH1602_CursorOrDisplayShift (bool SCbit, bool RLbit) ; void MT_WH1602_FunctionSet (bool DLbit, bool Nbit, bool Fbit) ; void MT_WH1602_SetCGRAMAddress (uint8_t address) ; void MT_WH1602_SetDDRAMAddress (uint8_t address) ; bool MT_WH1602_ReadBusy(void ) ; void MT_WH1602_WriteData(uint8_t data) ;

Для некоторых команд нам нужно передать в функцию параметры, вот, например:

void MT_WH1602_DisplayOnOff (bool Dbit, bool Cbit, bool Bbit) ;

Смотрим в таблицу команд:

Видим, что командой Display ON/OFF не только включать/выключать дисплей, но также активировать/деактивировать курсор и мигание курсора. В даташите эти биты команды обозначены как D,C и B, их то мы и передаем в качестве параметров в функцию. Если нам нужно включить дисплей и курсор, но отключить мигание курсора, вызываем команду следующим образом:

MT_WH1602_DisplayOnOff(1, 1, 0);

В общем, все просто 😉

Короче, создаем новый проект, добавляем библиотеку для работы с дисплеем WH1602, создаем пустой.c файл и начинаем заполнять его кодом:

// Подключаем файл библиотеки #include "MT_WH1602.h" /*******************************************************************/ int main(void ) { // Вызываем функцию инициализации, без этого никуда=) () ; // Теперь надо произвести начальную конфигурацию дисплея // Документация и интернет рекомендуют делать так;) MT_WH1602_FunctionSet(1 , 0 , 0 ) ; MT_WH1602_Delay(1000 ) ; MT_WH1602_FunctionSet(1 , 0 , 0 ) ; MT_WH1602_Delay(1000 ) ; MT_WH1602_FunctionSet(1 , 0 , 0 ) ; MT_WH1602_Delay(1000 ) ; MT_WH1602_FunctionSet(1 , 1 , 1 ) ; MT_WH1602_Delay(1000 ) ; MT_WH1602_DisplayOnOff(1 , 0 , 0 ) ; MT_WH1602_Delay(1000 ) ; MT_WH1602_ClearDisplay() ; MT_WH1602_Delay(2000 ) ; // Я тут значения задержки для примера взял первые пришедшие в голову) // Вообще нужно проверять флаг занятости дисплея // Давайте теперь выведем что-нибудь на дисплей, например название нашего сайта MT_WH1602_WriteData(0x6D ) ; MT_WH1602_Delay(100 ) ; MT_WH1602_WriteData(0x69 ) ; MT_WH1602_Delay(100 ) ; MT_WH1602_WriteData(0x63 ) ; MT_WH1602_Delay(100 ) ; MT_WH1602_WriteData(0x72 ) ; MT_WH1602_Delay(100 ) ; MT_WH1602_WriteData(0x6F ) ; MT_WH1602_Delay(100 ) ; MT_WH1602_WriteData(0x74 ) ; MT_WH1602_Delay(100 ) ; MT_WH1602_WriteData(0x65 ) ; MT_WH1602_Delay(100 ) ; MT_WH1602_WriteData(0x63 ) ; MT_WH1602_Delay(100 ) ; MT_WH1602_WriteData(0x68 ) ; MT_WH1602_Delay(100 ) ; MT_WH1602_WriteData(0x6E ) ; MT_WH1602_Delay(100 ) ; MT_WH1602_WriteData(0x69 ) ; MT_WH1602_Delay(100 ) ; MT_WH1602_WriteData(0x63 ) ; MT_WH1602_Delay(100 ) ; MT_WH1602_WriteData(0x73 ) ; MT_WH1602_Delay(100 ) ; MT_WH1602_WriteData(0x2E ) ; MT_WH1602_Delay(100 ) ; MT_WH1602_WriteData(0x72 ) ; MT_WH1602_Delay(100 ) ; MT_WH1602_WriteData(0x75 ) ; MT_WH1602_Delay(100 ) ; while (1 ) { __NOP() ; } } /*******************************************************************/

Готово, проверяем)


Как видите, все работает правильно)

Кстати я как то упустил из виду вопрос о том, что же писать в дисплей, чтобы вывести тот или иной символ. Вот табличка из даташита:

Так вот, чтобы определить какое значение записать в память дисплея, нужно для конкретного символа взять числа, написанные сверху и слева в этой таблице. Например, символ “А”. Смотрим – этому символу соответствует колонка 0100 (0х4) и строка 0001 (0х1). Получается, что для вывода символа “А” нужно записать в дисплей значение 0х41.

Вот теперь вроде все =) Разобрались мы с подключением и работой дисплея WH1602, так что до скорого!

P.S. Я при работе с библиотекой не тестировал функцию чтения флага занятости, так что, если вдруг что-то будет работать не так, как надо, пишите, будем разбираться)

Все давно привыкли, что у каждого электронного устройства есть экран, с помощью которого оно дает человеку всякую полезную информацию. MP3-плеер показывает название играемого трека, пульт квадрокоптера отображает полетную телеметрию, даже стиральная машина выводит на дисплей время до конца стирки, а на смартфоне вообще размещается целый рабочий стол персонального компьютера! Скорее всего, вашему очередному устройству тоже не помешает какой-нибудь небольшой дисплейчик 🙂 Попробуем сделать простые электронные часы! А в качестве табло используем распространенный и дешевый символьный жидкокристаллический дисплей 1602. Вот прямо такой, как на картинке: Кроме 16х2, достаточно популярным считается символьный дисплей 20х4 (четыре строки по 20 символов), а также графический дисплей с разрешением 128х64 точек. Вот они на картинках:

1. Подключение символьного ЖК дисплея 1602

У дисплея 1602 есть 16 выводов. Обычно они нумеруются слева-направо, если смотреть на него так как на картинке. Иногда выводы подписываются, типа: DB0, DB1, EN и т.п. А иногда просто указывают номер вывода. В любом случае, список выводов всегда одинаковый: 1 — «GND», земля (минус питания); 2 — «Vcc»,­ питание +5В; 3 — «VEE», контраст; 4 — «RS», выбор регистра; 5 — «R/W», направление передачи данных (запись/чтение); 6 — «EN», синхронизация; 7-14 — «DB0­», «DB1», .., «DB7″­- шина данных; 15 — анод подсветки (+5В); 16 — катод подсветки (земля). Линии VEE, RS и четыре линии данных DB4, DB5, DB6, DB7 подключаем к цифровым выводам контроллера. Линию «R/W» подключим к «земле» контроллера (так как нам потребуется только функция записи в память дисплея). Подсветку пока подключать не будем, с этим, я полагаю, вы сами легко разберетесь 🙂 Принципиальная схема подключения дисплея к Ардуино Уно
Внешний вид макета
На всякий случай еще и в виде таблички:
ЖК дисплей 1602 1 2 4 6 11 12 13 14 15 16
Ардуино Уно GND +5V 4 5 6 7 8 9 +5V GND

2. Программируем «Hello, world!»

Для работы с ЖК дисплеями различных размеров и типов, в редакторе Arduino IDE имеется специальная библиотека LiquidCrystal . Чтобы подключить библиотеку, запишем первой строчкой нашей программы следующее выражение: #include Далее, нам потребуется указать какие выводы Ардуино мы использовали для подключения дисплея. Эту информацию мы укажем при инициализации модуля: LiquidCrystal lcd(4, 5, 6, 7, 8, 9); Здесь первые два аргумента — это выводы RS и EN, а оставшиеся четыре — линии шины данных DB4-DB7. Далее, укажем размер дисплея с помощью команды «begin»: lcd.begin(16, 2); Напоминаю, в нашем дисплее имеется две строки, по 16 символов в каждой. Наконец, для вывода текста нам понадобится простая функция «print». Вывод с помощью этой функции всем известной фразы будет выглядеть следующим образом: lcd.print("Hello, world!"); Полностью программа будет выглядеть так: #include LiquidCrystal lcd(4, 5, 6, 7, 8, 9); void setup(){ lcd.begin(16, 2); lcd.print("Hello, world!"); } void loop(){ } Загружаем её на Ардуино Уно, и смотрим что творится на дисплее. Может быть три основных ситуации 🙂 1) На дисплее отобразится надпись «Hello, world!». Значит вы все правильно подключили, и контраст каким-то чудесным образом оказался изначально правильно настроен. Радуемся, и переходим к следующей главе. 2) На дисплее отобразится целый ряд черных прямоугольников — требуется настройка контраста! Именно для этого мы добавили в цепь потенциометр с ручкой. Крутим его от одного края, до другого, до момента пока на дисплее не появится четкая надпись. 3) Два ряда черных прямоугольников. Скорее всего, вы что-то напутали при подключении. Проверьте трижды все провода. Если не найдете ошибку — попросите кота проверить!

3. Программируем часы

Теперь когда дисплей точно работает, попробуем превратить наше нехитрое устройство в настоящие электронные часы. Внимание! Для вывода времени нам потребуется библиотека «Time». Если она еще не установлена, то можно скачать архив по ссылке . Подключим ее: #include Затем установим текущие дату и время с помощью функции «setTime»: setTime(23, 59, 59, 12, 31, 2015); Здесь все понятно: часы, минуты, секунды, месяц, число, год. Для вывода даты используем кучу функции:
  • year() — вернет нам год;
  • month()­ — месяц;
  • day() ­- день;
  • hour() ­- час;
  • minute() — вернет минуту;
  • second() -­ секунду.
Теперь обратим внимание вот на какой факт. Если посчитать количество символов в типовой записи даты: «31.12.2015 23:59:59», получим 19. А у нас всего 16! Не влазит, однако, в одну строчку. Решить проблему можно еще одной полезной функцией — «setCursor». Эта функция устанавливает курсор в нужную позицию. Например: lcd.setCursor(0,1); Установит курсор в начало второй строчки. Курсор — это место символа, с которого начнется вывод текста следующей командой «print». Воспользуемся этой функцией для вывода даты в первой строчке, а времени во второй. С выводом даты и времени теперь все ясно. Остались рутинные вещи. Например, после каждого заполнения дисплея, мы будем его чистить функцией «clear()»: lcd.clear(); А еще нам нет смысла выводить данные на дисплей чаще чем раз в секунду, поэтому между двумя итерациями сделаем паузу в 1000 миллисекунд. Итак, сложив все вместе, получим такую программу: #include #include LiquidCrystal lcd(4, 5, 6, 7, 8, 9); void setup(){ lcd.begin(16, 2); setTime(7,0,0,1,10,2015); // 7 утра, десятого января 2015 года } void loop(){ lcd.clear(); lcd.print(day()); lcd.print("."); lcd.print(month()); lcd.print("."); lcd.print(year()); lcd.setCursor(0, 1); lcd.print(hour()); lcd.print(":"); lcd.print(minute()); lcd.print(":"); lcd.print(second()); delay(1000); } Загружаем скетч на Ардуино Уно, и наблюдаем за ходом часиков! 🙂 Для того чтобы закрепить полученные знания, рекомендую прокачать наши часы до полноценного будильника. Всего-то на всего потребуется добавить пару кнопок и зуммер 🙂
Поделиться